Foraging-efficiency-predation-risk trade-off in the grey squirrel

1985 ◽  
Vol 33 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Steven L. Lima ◽  
Thomas J. Valone ◽  
Thomas Caraco
Author(s):  
Harish Prakash ◽  
Stefan Greif ◽  
Yossi Yovel ◽  
Rohini Balakrishnan

Prey signalling in aggregation become more conspicuous with increasing numbers and tend to attract more predators. Such grouping may, however, benefit prey by lowering the risk of being captured due to the predator's difficulty in targeting individuals. Previous studies have investigated anti-predatory benefits of prey aggregation using visual predators, but it is unclear whether such benefits are gained in an auditory context. We investigated whether katydids of the genus Mecopoda gain protection from their acoustically eavesdropping bat predator, Megaderma spasma, when calling in aggregation. In a choice experiment, bats approached calls of prey aggregations more often than those of prey calling alone, indicating that prey calling in aggregation are at higher risk. In prey capture tasks, however, the average time taken, and the number of flight passes made by bats before capturing a katydid, were significantly higher for prey calling in aggregation as compared to calling alone, indicating that prey face lower predation risk when calling in aggregation. Another common anti-predatory strategy, calling from within vegetation, increased the time taken by bats to capture katydids calling alone but did not increase the time taken to capture prey calling from aggregations. The increased time taken to capture a prey calling in aggregation compared to solitary calling prey offers an escape opportunity, thus providing prey signalling acoustically in aggregations with anti-predatory benefits. For bats, greater detectability of calling prey aggregations is offset by lower foraging efficiency, and this trade-off may shape predator foraging strategies in natural environments.


Author(s):  
Kristina Noreikienė ◽  
Kim Jaatinen ◽  
Benjamin B. Steele ◽  
Markus Öst

AbstractGlucocorticoid hormones may mediate trade-offs between current and future reproduction. However, understanding their role is complicated by predation risk, which simultaneously affects the value of the current reproductive investment and elevates glucocorticoid levels. Here, we shed light on these issues in long-lived female Eiders (Somateria mollissima) by investigating how current reproductive investment (clutch size) and hatching success relate to faecal glucocorticoid metabolite [fGCM] level and residual reproductive value (minimum years of breeding experience, body condition, relative telomere length) under spatially variable predation risk. Our results showed a positive relationship between colony-specific predation risk and mean colony-specific fGCM levels. Clutch size and female fGCM were negatively correlated only under high nest predation and in females in good body condition, previously shown to have a longer life expectancy. We also found that younger females with longer telomeres had smaller clutches. The drop in hatching success with increasing fGCM levels was least pronounced under high nest predation risk, suggesting that elevated fGCM levels may allow females to ensure some reproductive success under such conditions. Hatching success was positively associated with female body condition, with relative telomere length, particularly in younger females, and with female minimum age, particularly under low predation risk, showing the utility of these metrics as indicators of individual quality. In line with a trade-off between current and future reproduction, our results show that high potential for future breeding prospects and increased predation risk shift the balance toward investment in future reproduction, with glucocorticoids playing a role in the resolution of this trade-off.


Ecology ◽  
2001 ◽  
Vol 82 (6) ◽  
pp. 1535-1545 ◽  
Author(s):  
Mark A. McPeek ◽  
Margaret Grace ◽  
Jean M. L. Richardson

Mammalia ◽  
2015 ◽  
Vol 79 (4) ◽  
Author(s):  
Roberta Chirichella ◽  
Andrea Mustoni ◽  
Marco Apollonio

AbstractIn large mammalian herbivores, an increase in herd size not only reduces predation risk but also energy intake. As a consequence, the size of the groups made up by herbivores is often assumed to be the outcome of a trade-off depending on local predation risk and food availability. We studied Alpine chamois (


2010 ◽  
Vol 6 (4) ◽  
pp. 472-474 ◽  
Author(s):  
Guy Beauchamp

Disentangling the relative contribution of predation avoidance and increased foraging efficiency in the evolution of sociality in animals has proven difficult given that the two types of benefits often operate concurrently. I identified different types of refuges from predation in birds related to morphological and ecological traits, providing an opportunity to examine concomitant changes in sociality over evolutionary times. Results of a matched-species comparative analysis indicated a reduction in the size of foraging or non-foraging groups but not complete disappearance under negligible predation risk. The results suggest that while predation avoidance is an important component in the evolution of sociality in birds, it is most probably not acting alone but rather in conjunction with other benefits such as increased foraging efficiency.


2020 ◽  
Vol 287 (1922) ◽  
pp. 20192555 ◽  
Author(s):  
Keenan Stears ◽  
Melissa H. Schmitt ◽  
Christopher C. Wilmers ◽  
Adrian M. Shrader

Prey anti-predator behaviours are influenced by perceived predation risk in a landscape and social information gleaned from herd mates regarding predation risk. It is well documented that high-quality social information about risk can come from heterospecific herd mates. Here, we integrate social information with the landscape of fear to quantify how these landscapes are modified by mixed-species herding. To do this, we investigated zebra vigilance in single- and mixed-species herds across different levels of predation risk (lion versus no lion), and assessed how they manage herd size and the competition–information trade-off associated with grouping behaviour. Overall, zebra performed higher vigilance in high-risk areas. However, mixed-species herding reduced vigilance levels. We estimate that zebra in single-species herds would have to feed for approximately 35 min more per day in low-risk areas and approximately 51 min more in high-risk areas to compensate for the cost of higher vigilance. Furthermore, zebra benefitted from the competition–information trade-off by increasing the number of heterospecifics while keeping the number of zebra in a herd constant. Ultimately, we show that mixed-species herding reduces the effects of predation risk, whereby zebra in mixed-species herds, under high predation risk, perform similar levels of vigilance compared with zebra in low-risk scenarios.


Ecology ◽  
1988 ◽  
Vol 69 (5) ◽  
pp. 1352-1366 ◽  
Author(s):  
Earl E. Werner ◽  
Donald J. Hall

2000 ◽  
Vol 48 (2) ◽  
pp. 155 ◽  
Author(s):  
Eve McDonald-Madden ◽  
Lian K. Akers ◽  
Deena J. Brenner ◽  
Sarah Howell ◽  
Blair W. Patullo ◽  
...  

Many eutherian mammals adjust their foraging behaviour according to the presence or threat of predators. Here, we examine experimentally whether an urban population of brushtail possums, Trichosurus vulpecula, similarly adjust their foraging behaviour. Our field experiments manipulated the quantity of food items in artificial feeders placed at different distances from trees. These experiments showed that the possums remained longer at feeders placed far from the trees, but their foraging behaviour did not change with the initial amount of food. The scanning behaviour of possums did not simply increase with distance from the trees, as predicted from studies of other vertebrates. Nevertheless, the number of physical conflicts between individuals increased as the amount of available food decreased. These data suggest that the changes in the foraging behaviour of the possums in this population do not reflect a simple trade-off between foraging efficiency and the risk of predation or competition.


Sign in / Sign up

Export Citation Format

Share Document