scholarly journals Glucocorticoids, state-dependent reproductive investment and success in the face of danger in a long-lived bird

Author(s):  
Kristina Noreikienė ◽  
Kim Jaatinen ◽  
Benjamin B. Steele ◽  
Markus Öst

AbstractGlucocorticoid hormones may mediate trade-offs between current and future reproduction. However, understanding their role is complicated by predation risk, which simultaneously affects the value of the current reproductive investment and elevates glucocorticoid levels. Here, we shed light on these issues in long-lived female Eiders (Somateria mollissima) by investigating how current reproductive investment (clutch size) and hatching success relate to faecal glucocorticoid metabolite [fGCM] level and residual reproductive value (minimum years of breeding experience, body condition, relative telomere length) under spatially variable predation risk. Our results showed a positive relationship between colony-specific predation risk and mean colony-specific fGCM levels. Clutch size and female fGCM were negatively correlated only under high nest predation and in females in good body condition, previously shown to have a longer life expectancy. We also found that younger females with longer telomeres had smaller clutches. The drop in hatching success with increasing fGCM levels was least pronounced under high nest predation risk, suggesting that elevated fGCM levels may allow females to ensure some reproductive success under such conditions. Hatching success was positively associated with female body condition, with relative telomere length, particularly in younger females, and with female minimum age, particularly under low predation risk, showing the utility of these metrics as indicators of individual quality. In line with a trade-off between current and future reproduction, our results show that high potential for future breeding prospects and increased predation risk shift the balance toward investment in future reproduction, with glucocorticoids playing a role in the resolution of this trade-off.

2021 ◽  
Vol 9 ◽  
Author(s):  
Bertille Mohring ◽  
Frédéric Angelier ◽  
Kim Jaatinen ◽  
Charline Parenteau ◽  
Markus Öst

Predation risk affects the costs and benefits of prey life-history decisions. Predation threat is often higher during reproduction, especially in conspicuous colonial breeders. Therefore, predation risk may increase the survival cost of breeding, and reduce parental investment. The impact of predation risk on avian parental investment decisions may be hormonally mediated by prolactin and corticosterone, making them ideal tools for studying the trade-offs involved. Prolactin is thought to promote parental care and commitment in birds. Corticosterone is involved in allostasis and may either mediate reduced parental investment (corticosterone-fitness hypothesis), or promote parental investment through a reallocation of resources (corticosterone-adaptation hypothesis). Here, we used these hormonal proxies of incubation commitment to examine the impact of predation risk on reproduction in common eiders (Somateria mollissima) breeding in the Baltic Sea. This eider population is subject to high but spatially and temporally variable predation pressure on adults (mainly by the white-tailed eagle Haliaeetus albicilla and introduced mammalian predators) and nests (by the adult predators and exclusive egg predators such as hooded crows Corvus cornix). We investigated baseline hormonal levels and hatching success as a function of individual quality attributes (breeding experience, female and duckling body condition), reproductive investment (clutch weight), and predation risk. We expected individuals nesting in riskier environments (i.e., on islands where predation on adults or nests is higher, or in less concealed nests) to reduce their parental investment in incubation, reflected in lower baseline prolactin levels and either higher (corticosterone-fitness hypothesis) or lower (corticosterone-adaptation hypothesis) baseline corticosterone levels. Contrary to our predictions, prolactin levels showed a positive correlation with nest predation risk. The unexpected positive relationship could result from the selective disappearance of low-quality females (presumably having low prolactin levels) from risky sites. Supporting this notion, female body condition and hatching success were positively correlated with predation risk on females, and baseline prolactin concentrations were positively correlated with duckling body condition, a proxy of maternal quality. In line with the corticosterone-adaptation hypothesis, baseline corticosterone levels increased with reproductive investment, and were negatively associated with nest predation risk. Hatching success was lower on islands where nest predation risk was higher, consistent with the idea of reduced reproductive investment under increased threat. Long-term individual-based studies are now needed to distinguish selection processes occurring at the population scale from individually plastic parental investment in relation to individual quality and variable predation risk.


2018 ◽  
Vol 285 (1892) ◽  
pp. 20182141 ◽  
Author(s):  
Stefania Casagrande ◽  
Michaela Hau

The trade-off between reproductive investment and survival is central to life-history theory, but the relative importance and the complex interactions among the physiological mechanisms mediating it are still debated. Here we experimentally tested whether baseline glucocorticoid hormones, the redox system or their interaction mediate reproductive investment–survival trade-offs in wild great tits ( Parus major ). We increased the workload of parental males by clipping three feathers on each wing, and 5 days later determined effects on baseline corticosterone concentrations (Cort), redox state (reactive oxygen metabolites, protein carbonyls, glutathione peroxidase [GPx], total non-enzymatic antioxidants), body mass, body condition, reproductive success and survival. Feather-clipping did not affect fledgling numbers, chick body condition, nest provisioning rates or survival compared with controls. However, feather-clipped males lost mass and increased both Cort and GPx concentrations. Within feather-clipped individuals, GPx increases were positively associated with reproductive investment (i.e. male nest provisioning). Furthermore, within all individuals, males that increased GPx suffered reduced survival rates. Baseline Cort increases were related to mass loss but not to redox state, nest provisioning or male survival. Our findings provide experimental evidence that changes in the redox system are associated with the trade-off between reproductive investment and survival, while baseline Cort may support this trade-off indirectly through a link with body condition. These results also emphasize that plastic changes in individuals, rather than static levels of physiological signals, may mediate life-history trade-offs.


2019 ◽  
Vol 30 (4) ◽  
pp. 986-992 ◽  
Author(s):  
Frank Groenewoud ◽  
Sjouke A Kingma ◽  
Kat Bebbington ◽  
David S Richardson ◽  
Jan Komdeur

AbstractNest predation is a common cause of reproductive failure for many bird species, and various antipredator defense behaviors have evolved to reduce the risk of nest predation. However, trade-offs between current reproductive duties and future reproduction often limit the parent’s ability to respond to nest predation risk. Individual responses to experimentally increased nest predation risk can give insights into these trade-offs. Here, we investigate whether social and ecological factors affect individual responses to predation risk by experimentally manipulating the risk of nest predation using taxidermic mounts in the cooperative breeding Seychelles warbler (Acrocephalus sechellensis). Our results show that dominant females, but not males, alarm called more often when they confront a nest predator model alone than when they do so with a partner, and that individuals that confront a predator together attacked more than those that did so alone. Dominant males increased their antipredator defense by spending more time nest guarding after a presentation with a nest predator, compared with a nonpredator control, but no such effect was found for females, who did not increase the time spent incubating. In contrast to incubation by females, nest guarding responses by dominant males depended on the presence of other group members and food availability. These results suggest that while female investment in incubation is always high and not dependent on social and ecological conditions, males have a lower initial investment, which allows them to respond to sudden changes in nest predation risk.


Ostrich ◽  
2011 ◽  
Vol 82 (3) ◽  
pp. 175-183 ◽  
Author(s):  
David Hořák ◽  
Ondřej Sedláček ◽  
Anna Tószögyová ◽  
Tomáš Albrecht ◽  
Michal Ferenc ◽  
...  

2017 ◽  
Vol 29 (2) ◽  
pp. 301-311 ◽  
Author(s):  
Kristen G Dillon ◽  
Courtney J Conway

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Vladimír Remeš ◽  
Beata Matysioková ◽  
Jakub Vrána

Abstract Background Growth trajectories should be adapted to selective factors of each species’ environment. However, major shaping forces of growth and development are unclear, especially when studying several traits at once. Birds provide an ideal opportunity to analyze growth patterns across species due to there being enough available data. We tested the relative importance of nest predation risk, the number of care-givers, nest height, foraging substrate, clutch size, and latitude on growth patterns of passerine birds (Passeriformes) using phylogenetic comparative methods. Specifically, we studied the evolution of fledging time, average and peak growth rates, and relative development at fledging of body mass and tarsus, wing, and tail length. Results Using a comprehensive literature search and data quality control, we obtained data on growth in 231 species based on 295 populations. Species with long development in the nest grew slowly and had well-developed traits at fledging. Species breeding under high nest predation risk, building their nests close to the ground, and those living in northern temperate regions fledged early and grew fast, sometimes fledging with less developed body mass and traits critical for locomotion (tarsus, wing, and tail). On the other hand, the number of caring adults, clutch size, and species’ foraging substrate had very limited predictive value for growth patterns across passerine species. Conclusions Shortening of the nestling period was a primary means of accelerating development (in relation to nest predation, nest height, and latitude), sometimes supplemented by higher peak growth rates of body mass, tarsus, and wing (especially in relation to latitude). Overall growth patterns of passerines were adaptively tuned to nest predation risk and nest height, with northern temperate species having especially short nestling periods and fast growth rates of body mass, tarsus, and wing.


2009 ◽  
Vol 5 (2) ◽  
pp. 176-178 ◽  
Author(s):  
Mikko Mönkkönen ◽  
Jukka T Forsman ◽  
Tiina Kananoja ◽  
Hannu Ylönen

Current life-history theory predicts that increased mortality at early stages of life leads to reduced initial investment (e.g. clutch size) but increased subsequent investment during the reproduction attempt. In a field experiment, migratory pied flycatchers Ficedula hypoleuca perceived differences in mammalian nest predation risk and altered their reproductive strategies in two respects. First, birds avoided nest sites manipulated to reflect the presence of a predator. Second, birds breeding in risky areas nested 4 days earlier and laid 10 per cent larger clutches than those in safe areas, a result that runs counter to the prevailing life-history paradigm. We suggest that the overwhelming importance of nest predation to individual fitness reduces the value of collecting other information on habitat features leading to expedited onset of nesting, and, consequently, to larger clutch size.


The Condor ◽  
2006 ◽  
Vol 108 (1) ◽  
pp. 178-192 ◽  
Author(s):  
Virginia Sanz ◽  
Adriana Rodriguez-Ferraro

AbstractWe studied the breeding biology of the Yellow-shouldered Parrot (Amazona barbadensis) on Margarita Island from March-August, 1990 to 1999. The timing of the different phases (egg-laying, hatching, fledging) was consistent over the years, except during 1998 when all phases were delayed. The average clutch size was 3.38 ± 0.78 eggs per nest, with a range of one to five eggs per clutch, and most eggs survived until hatching (3.36 ± 0.80 eggs per nest). Total clutch size and hatching success of this species on Margarita Island are among the highest in the genus Amazona, suggesting the Yellow-shouldered Parrot has a higher reproductive potential than other species of the genus. We detected interannual differences for some of the reproductive parameters, all in 1998, a year with an extreme drought. Egg losses totaled 20% and were caused by hatching failure, predation, and human disturbance. Forty-nine percent of nestlings were lost, mainly due to poaching. The number of fledglings per nesting pair averaged 1.27 ± 1.61, but varied greatly among years. Thus, in relation to the average total clutch laid, each pair lost an average of 62% of its initial reproductive investment.


Sign in / Sign up

Export Citation Format

Share Document