scholarly journals Functional reconstitution of bacterially expressed human potassium channels in proteoliposomes: membrane potential measurements with JC-1 to assay ion channel activity

1999 ◽  
Vol 1416 (1-2) ◽  
pp. 92-100 ◽  
Author(s):  
Baron Chanda ◽  
M.K Mathew
2003 ◽  
Vol 8 (6) ◽  
pp. 660-667 ◽  
Author(s):  
Paul Burnett ◽  
Janet K. Robertson ◽  
Jeffrey M. Palmer ◽  
Richard R. Ryan ◽  
Adrienne E. Dubin ◽  
...  

Designing high-throughput screens for voltage-gated ion channels has been a tremendous challenge for the pharmaceutical industry because channel activity is dependent on the transmembrane voltage gradient, a stimulus unlike ligand binding to G-protein-coupled receptors or ligand-gated ion channels. To achieve an acceptable throughput, assays to screen for voltage-gated ion channel modulators that are employed today rely on pharmacological intervention to activate these channels. These interventions can introduce artifacts. Ideally, a high-throughput screen should not compromise physiological relevance. Hence, a more appropriate method would activate voltage-gated ion channels by altering plasma membrane potential directly, via electrical stimulation, while simultaneously recordingthe operation of the channel in populations of cells. The authors present preliminary results obtained from a device that is designed to supply precise and reproducible electrical stimuli to populations of cells. Changes in voltage-gated ion channel activity were monitored using a digital fluorescent microscope. The prototype electric field stimulation (EFS) device provided real-time analysis of cellular responsiveness to physiological and pharmacological stimuli. Voltage stimuli applied to SK-N-SH neuroblastoma cells cultured on the EFS device evoked membrane potential changes that were dependent on activation of voltage-gated sodium channels. Data obtained using digital fluorescence microscopy suggests suitability of this system for HTS.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
A Vasas ◽  
P Orvos ◽  
L Tálosi ◽  
P Forgo ◽  
G Pinke ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiankun Hui ◽  
Hongyang Jing ◽  
Xinsheng Lai

Abstract Background Neuromuscular junctions (NMJs) are chemical synapses formed between motor neurons and skeletal muscle fibers and are essential for controlling muscle contraction. NMJ dysfunction causes motor disorders, muscle wasting, and even breathing difficulties. Increasing evidence suggests that many NMJ disorders are closely related to alterations in specific gene products that are highly concentrated in the synaptic region of the muscle. However, many of these proteins are still undiscovered. Thus, screening for NMJ-specific proteins is essential for studying NMJ and the pathogenesis of NMJ diseases. Results In this study, synaptic regions (SRs) and nonsynaptic regions (NSRs) of diaphragm samples from newborn (P0) and adult (3-month-old) mice were used for RNA-seq. A total of 92 and 182 genes were identified as differentially expressed between the SR and NSR in newborn and adult mice, respectively. Meanwhile, a total of 1563 genes were identified as differentially expressed between the newborn SR and adult SR. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) of the DEGs were performed. Protein–protein interaction (PPI) networks were constructed using STRING and Cytoscape. Further analysis identified some novel proteins and pathways that may be important for NMJ development, maintenance and maturation. Specifically, Sv2b, Ptgir, Gabrb3, P2rx3, Dlgap1 and Rims1 may play roles in NMJ development. Hcn1 may localize to the muscle membrane to regulate NMJ maintenance. Trim63, Fbxo32 and several Asb family proteins may regulate muscle developmental-related processes. Conclusion Here, we present a complete dataset describing the spatiotemporal transcriptome changes in synaptic genes and important synaptic pathways. The neuronal projection-related pathway, ion channel activity and neuroactive ligand-receptor interaction pathway are important for NMJ development. The myelination and voltage-gated ion channel activity pathway may be important for NMJ maintenance. These data will facilitate the understanding of the molecular mechanisms underlying the development and maintenance of NMJ and the pathogenesis of NMJ disorders.


2014 ◽  
Vol 306 (5) ◽  
pp. C460-C470 ◽  
Author(s):  
Kiril L. Hristov ◽  
Amy C. Smith ◽  
Shankar P. Parajuli ◽  
John Malysz ◽  
Georgi V. Petkov

Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility.


ChemInform ◽  
2010 ◽  
Vol 28 (9) ◽  
pp. no-no
Author(s):  
H. WAGNER ◽  
K. HARMS ◽  
U. KOERT ◽  
S. MEDER ◽  
G. BOHEIM

2021 ◽  
Author(s):  
Robert Stewart ◽  
Bruce E. Cohen ◽  
Jon T. Sack

2014 ◽  
Vol 10 (5) ◽  
pp. e1004077 ◽  
Author(s):  
Jose L. Nieto-Torres ◽  
Marta L. DeDiego ◽  
Carmina Verdiá-Báguena ◽  
Jose M. Jimenez-Guardeño ◽  
Jose A. Regla-Nava ◽  
...  

2011 ◽  
Vol 26 (5) ◽  
pp. 2376-2382 ◽  
Author(s):  
Oliver Pänke ◽  
Winnie Weigel ◽  
Sabine Schmidt ◽  
Anja Steude ◽  
Andrea A. Robitzki

2006 ◽  
Vol 1758 (4) ◽  
pp. 493-498 ◽  
Author(s):  
Yuri N. Antonenko ◽  
Tatyana B. Stoilova ◽  
Sergey I. Kovalchuk ◽  
Natalya S. Egorova ◽  
Alina A. Pashkovskaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document