Signaling from G-Protein-coupled Receptors to Mitogen-activated Protein (MAP)-Kinase Cascades

1998 ◽  
Vol 56 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Marco Lopez-Ilasaca
1998 ◽  
Vol 330 (2) ◽  
pp. 605-609 ◽  
Author(s):  
C. M. Gerben ZONDAG ◽  
R. Friso POSTMA ◽  
Ingrid VAN ETTEN ◽  
Ingrid VERLAAN ◽  
H. Wouter MOOLENAAR

Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) are structurally related lipid mediators that act on distinct G-protein-coupled receptors to evoke similar responses, including Ca2+ mobilization, adenylate cyclase inhibition, and mitogen-activated protein (MAP) kinase activation. However, little is still known about the respective receptors. A recently cloned putative LPA receptor (Vzg-1/Edg-2) is similar to an orphan Gi-coupled receptor termed Edg-1. Here we show that expression of Edg-1 in Sf9 and COS-7 cells results in inhibition of adenylate cyclase and activation of MAP kinase (Gi-mediated), but not Ca2+ mobilization, in response to S1P. These responses are specific in that (i) S1P action is not mimicked by LPA, and (ii) Vzg-1/Edg-2 cannot substitute for Edg-1. Thus the Edg-1 receptor is capable of mediating a subset of the cellular responses to S1P.


2002 ◽  
Vol 80 (5) ◽  
pp. 375-382 ◽  
Author(s):  
Louis M Luttrell

Over the past decade, it has become apparent that many G-protein-coupled receptors (GPCRs) generate signals that control cellular differentiation and growth, including stimulation of Ras family GTPases and activation of mitogen-activated protein (MAP) kinase pathways. The mechanisms that GPCRs use to control the activity of MAP kinases vary between receptor and cell type but fall broadly into one of three categories: signals initiated by classical G protein effectors, e.g., protein kinase (PK)A and PKC, signals initiated by cross-talk between GPCRs and classical receptor tyrosine kinases, e.g., "transactivation" of epidermal growth factor (EGF) receptors, and signals initiated by direct interaction between β-arrestins and components of the MAP kinase cascade, e.g., β-arrestin "scaffolds". While each of these pathways results in increased cellular MAP kinase activity, emerging data suggest that they are not functionally redundant. MAP kinase activation occurring via PKC-dependent pathways and EGF receptor transactivation leads to nuclear translocation of the kinase and stimulates cell proliferation, while MAP kinase activation via β-arrestin scaffolds primarily increases cytosolic kinase activity. By controlling the spatial and temporal distribution of MAP kinase activity within the cell, the consequences of GPCR-stimulated MAP kinase activation may be determined by the mechanism by which they are activated.Key words: G-protein-coupled receptor, receptor tyrosine kinase, β-arrestin, mitogen-activated protein kinase, extracellular signal-regulated kinase.


Nature ◽  
1996 ◽  
Vol 383 (6600) ◽  
pp. 547-550 ◽  
Author(s):  
Ivan Dikic ◽  
George Tokiwa ◽  
Sima Lev ◽  
Sara A. Courtneidge ◽  
Joseph Schlessinger

2003 ◽  
Vol 30 (2) ◽  
pp. 117-126 ◽  
Author(s):  
LM Luttrell

A growing body of data supports the conclusion that G protein-coupled receptors can regulate cellular growth and differentiation by controlling the activity of MAP kinases. The activation of heterotrimeric G protein pools initiates a complex network of signals leading to MAP kinase activation that frequently involves cross-talk between G protein-coupled receptors and receptor tyrosine kinases or focal adhesions. The dominant mechanism of MAP kinase activation varies significantly between receptor and cell type. Moreover, the mechanism of MAP kinase activation has a substantial impact on MAP kinase function. Some signals lead to the targeting of activated MAP kinase to specific extranuclear locations, while others activate a MAP kinase pool that is free to translocate to the nucleus and contribute to a mitogenic response.


2001 ◽  
Vol 29 (4) ◽  
pp. 500-504 ◽  
Author(s):  
M. von Zastrow

Many G-protein-coupled receptors (GPCRs) undergo agonist-induced endocytosis. Endocytosis contributes to distinct processes that regulate the number and functional activity of receptors present in the plasma membrane, contributing to the well described processes of receptor sequestration and down-regulation. Emerging evidence suggests additional functions of endocytosis in mediating GPCR signalling via certain effector pathways, such as mitogen-activated protein kinase modules. The diverse functions of endocytosis raise fundamental questions about the nature of the vesicular carriers and membrane pathways that mediate the endocytic trafficking of specific GPCRs. Insights into the biochemical and functional properties of endocytic vesicles containing internalized opioid and adrenergic receptors will be discussed. Progress towards understanding the mechanisms that control the specificity with which distinct GPCRs are sorted to specialized sub-populations of endocytic vesicles will be highlighted.


2001 ◽  
Vol 2 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Dietmar Böcker ◽  
Eugen J. Verspohl

MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [P32]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 (IC50=51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [H3]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genisteinsensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells.


1997 ◽  
Vol 272 (31) ◽  
pp. 19125-19132 ◽  
Author(s):  
Gregory J. Della Rocca ◽  
Tim van Biesen ◽  
Yehia Daaka ◽  
Deirdre K. Luttrell ◽  
Louis M. Luttrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document