scholarly journals Cell Volume Measurement Using Scanning Ion Conductance Microscopy

2000 ◽  
Vol 78 (1) ◽  
pp. 451-457 ◽  
Author(s):  
Yuri E. Korchev ◽  
Julia Gorelik ◽  
Max J. Lab ◽  
Elena V. Sviderskaya ◽  
Caroline L. Johnston ◽  
...  
2011 ◽  
Vol 8 (60) ◽  
pp. 913-925 ◽  
Author(s):  
Michele Miragoli ◽  
Alexey Moshkov ◽  
Pavel Novak ◽  
Andrew Shevchuk ◽  
Viacheslav O. Nikolaev ◽  
...  

Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies.


2021 ◽  
Vol 27 (S1) ◽  
pp. 500-502
Author(s):  
Oleg Suchalko ◽  
Roman Timoshenko ◽  
Alexander Vaneev ◽  
Vasilii Kolmogorov ◽  
Nikita Savin ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 317a
Author(s):  
Yusuke Mizutani ◽  
Zen Ishikura ◽  
Myung-Hoon Choi ◽  
Sang-Joon Cho ◽  
Takaharu Okajima

1985 ◽  
Vol 14 (6) ◽  
pp. 345-356
Author(s):  
Michael G. Garner ◽  
Andrew F. Phippard ◽  
John S. Horvath ◽  
Geoffrey G. Duggin ◽  
David J. Tiller

2017 ◽  
Vol 114 (9) ◽  
pp. 2395-2400 ◽  
Author(s):  
Umesh Vivekananda ◽  
Pavel Novak ◽  
Oscar D. Bello ◽  
Yuri E. Korchev ◽  
Shyam S. Krishnakumar ◽  
...  

Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog–digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels.


2011 ◽  
Vol 17 (S2) ◽  
pp. 236-237
Author(s):  
G De Filippi ◽  
C Moore

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Sign in / Sign up

Export Citation Format

Share Document