scholarly journals Scanning ion conductance microscopy: a convergent high-resolution technology for multi-parametric analysis of living cardiovascular cells

2011 ◽  
Vol 8 (60) ◽  
pp. 913-925 ◽  
Author(s):  
Michele Miragoli ◽  
Alexey Moshkov ◽  
Pavel Novak ◽  
Andrew Shevchuk ◽  
Viacheslav O. Nikolaev ◽  
...  

Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies.

Author(s):  
Ashley Page ◽  
David Perry ◽  
Patrick R. Unwin

Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vytautas Navikas ◽  
Samuel M. Leitao ◽  
Kristin S. Grussmayer ◽  
Adrien Descloux ◽  
Barney Drake ◽  
...  

AbstractHigh-resolution live-cell imaging is necessary to study complex biological phenomena. Modern fluorescence microscopy methods are increasingly combined with complementary, label-free techniques to put the fluorescence information into the cellular context. The most common high-resolution imaging approaches used in combination with fluorescence imaging are electron microscopy and atomic-force microscopy (AFM), originally developed for solid-state material characterization. AFM routinely resolves atomic steps, however on soft biological samples, the forces between the tip and the sample deform the fragile membrane, thereby distorting the otherwise high axial resolution of the technique. Here we present scanning ion-conductance microscopy (SICM) as an alternative approach for topographical imaging of soft biological samples, preserving high axial resolution on cells. SICM is complemented with live-cell compatible super-resolution optical fluctuation imaging (SOFI). To demonstrate the capabilities of our method we show correlative 3D cellular maps with SOFI implementation in both 2D and 3D with self-blinking dyes for two-color high-order SOFI imaging. Finally, we employ correlative SICM/SOFI microscopy for visualizing actin dynamics in live COS-7 cells with subdiffraction-resolution.


2020 ◽  
Author(s):  
Vytautas Navikas ◽  
Samuel M. Leitao ◽  
Kristin S. Grussmayer ◽  
Adrien Descloux ◽  
Barney Drake ◽  
...  

AbstractHigh-resolution live-cell imaging is necessary to study complex biological phenomena. Modern fluorescence microscopy methods are increasingly combined with complementary, label-free techniques to put the fluorescence information into the cellular context. The most common high-resolution imaging approaches used in combination with fluorescence imaging are electron microscopy and atomic-force microscopy (AFM), originally developed for solid-state material characterization. AFM routinely resolves atomic steps, however on soft biological samples, the forces between the tip and the sample deform the fragile membrane, thereby distorting the otherwise high axial resolution of the technique. Here we present scanning ion-conductance microscopy (SICM) as an alternative approach for topographical imaging of soft biological samples, preserving high axial resolution on cells. SICM is complemented with live-cell compatible super-resolution optical fluctuation imaging (SOFI). To demonstrate the capabilities of our method we show correlative 3D cellular maps with SOFI implementation in both 2D and 3D with self-blinking dyes for two-color high-order SOFI imaging. Finally, we employ correlative SICM/SOFI microscopy for visualizing actin dynamics in live COS-7 cells with subdiffractional resolution.


2000 ◽  
Vol 78 (1) ◽  
pp. 451-457 ◽  
Author(s):  
Yuri E. Korchev ◽  
Julia Gorelik ◽  
Max J. Lab ◽  
Elena V. Sviderskaya ◽  
Caroline L. Johnston ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 998-999
Author(s):  
Seung K. Rhee ◽  
Arjan P. Quist ◽  
Hai Lin ◽  
Nils Almqvist ◽  
Ratneshx Lai

Hemichannels from two single cells can join upon contact between these cells to form gap junctions - an intercellular pathway for the direct exchange of ions and small metabolites. Using techniques of fluorescent dye-uptake assay, laser confocal fluorescence imaging and atomic force microscopy (AFM), we have examined the role of hemichannels, present in the non-junctional regions of single cell plasma membrane, in the modulation of cell volume.Antibodies against a gap junctional protein connexin43, were immunolocalized to nonjunctional plasma membrane regions of single BICR-MlRk k (breast tumor epithelial) cells, KOM-1 (bovine aortic endothelial) cells, and GM04260 (AD-free human) fibroblast cells. In the absence of extracellular calcium, cytoplasmic uptake of Lucifer yellow (LY) but not of dextran-conjugated LY was observed in single cells. Dye uptake was prevented by gap junctional inhibitors, ẞ-glycyrrhetinic acid (ẞGCA) and oleamide.


2021 ◽  
Vol 27 (S1) ◽  
pp. 500-502
Author(s):  
Oleg Suchalko ◽  
Roman Timoshenko ◽  
Alexander Vaneev ◽  
Vasilii Kolmogorov ◽  
Nikita Savin ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 317a
Author(s):  
Yusuke Mizutani ◽  
Zen Ishikura ◽  
Myung-Hoon Choi ◽  
Sang-Joon Cho ◽  
Takaharu Okajima

Sign in / Sign up

Export Citation Format

Share Document