scholarly journals Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues

1986 ◽  
Vol 50 (3) ◽  
pp. 463-469 ◽  
Author(s):  
D.B. Tata ◽  
M. Foresti ◽  
J. Cordero ◽  
P. Tomashefsky ◽  
M.A. Alfano ◽  
...  
2018 ◽  
Vol 42 (10) ◽  
pp. 7993-8000
Author(s):  
Filip Smrčka ◽  
Přemysl Lubal

The thermodynamics and kinetics of formation/dissociation of Eu(iii) and Tb(iii) with the H2DO2A macrocyclic ligand were studied by time-resolved fluorescence spectroscopy.


1993 ◽  
Vol 4 (1) ◽  
pp. 93-105 ◽  
Author(s):  
B Reaves ◽  
M Horn ◽  
G Banting

TGN38 and TGN41 are isoforms of an integral membrane protein (TGN38/41) that is predominantly localized to the trans-Golgi network (TGN) of normal rat kidney cells. Polyclonal antisera to TGN38/41 have been used to monitor its appearance at, and removal from, the surface of control and Brefeldin A (BFA)-treated cells. Antibodies that recognize the lumenal domain of TGN38/41 are capable of specific binding to the surface of both control and BFA-treated cells. In both control and BFA-treated cells internalized TGN38/41 is targeted to the TGN; however, there are differences in 1) the morphology of the intracellular structures through which TGN38/41 passes and 2) the kinetics of internalization. These data demonstrate that TGN38/41 cycles between the plasma membrane and the TGN in control and BFA-treated cells and suggest that recycling pathways between the plasma membrane and the TGN exist for predominantly TGN proteins as well as those that normally cycle to other intracellular compartments. They also demonstrate that addition of BFA not only alters the morphology and localization of the TGN but also the kinetics of endocytosis.


2013 ◽  
Vol 85 (3) ◽  
pp. 589-608 ◽  
Author(s):  
Marcel Ameloot ◽  
Martin vandeVen ◽  
A. Ulises Acuña ◽  
Bernard Valeur

After recalling the basic relations relevant to both steady-state and time-resolved fluorescence polarization, it is shown how the values of steady-state polarized intensities recorded experimentally usually need to be corrected for systematic effects and errors, caused by instrumentation and sample properties. A list of selected reference values of steady-state fluorescence anisotropy and polarization is given. Attention is also paid to analysis of time-resolved fluorescence anisotropy data obtained by pulse fluorometry or phase and modulation fluorometry techniques. Recommendations for checking the accuracy of measurements are provided together with a list of selected time-resolved fluorescence anisotropy data as reported in the literature.


1986 ◽  
Vol 102 (4) ◽  
pp. 1224-1229 ◽  
Author(s):  
S E Myrdal ◽  
N Auersperg

KNRK cells (a normal rat kidney [NRK] cell line transformed by Kirsten murine sarcoma virus) in sparse culture exhibit a highly ruffled morphology, but the cause of this ruffling is unknown. In this study, we have demonstrated that the continuous, excess ruffling on KNRK cells is caused by one or more soluble agents secreted by the KNRK cells themselves. To do this study, an assay for ruffling responses in live cell cultures was defined, and its reproducibility was demonstrated. This assay permitted observation of the kinetics of ruffling responses (percentage of cells ruffled as a function of time after stimulation). This method was used to compare the kinetics of ruffling induced by insulin, epidermal growth factor, fibroblast growth factor, glucose, and KNRK cell conditioned medium (CM). Ruffling was elicited on NRK cells by each of the polypeptide mitogens and nutrients, but, in each case, this ruffling subsided spontaneously within an hour. CM from KNRK cells also caused ruffling movements on untransformed NRK cells, but this ruffling continued for at least 20 h. This response was largely blocked by premixing the KNRK cell CM with rabbit IgG against rat transforming growth factor, type alpha, (TGF-alpha). KNRK cells made quiescent (ruffle free) by a pH shift (from 7.4 to 8.4) responded to insulin, glucose, and KNRK cell CM with kinetics similar to those observed for each of these factors in NRK cells. The unusual feature for the ruffle-inducing agent(s) produced by KNRK cells was that this activity was not subject, in either NRK or KNRK cells, to the cellular off-regulation that limits the responses to insulin or glucose. Thus, the continuous ruffling of KNRK cells is caused by their own unregulated ruffle-inducing agent or agents, which appear to include TGF-alpha. This work also demonstrates that kinetic analysis of cellular responses to exogenous factors can provide new insights into the regulatory mechanisms involved in the normal limitation of these responses.


2016 ◽  
Vol 18 (22) ◽  
pp. 14904-14910 ◽  
Author(s):  
Huiyu Zhang ◽  
Yaping Chen ◽  
Rong Lu ◽  
Ruiyu Li ◽  
Anchi Yu

The charge carrier kinetics of carbon nitride colloid was investigated using a combination of femtosecond transient absorption and picosecond time-resolved fluorescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document