The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients

2003 ◽  
Vol 33 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Kyle Stanish ◽  
Michael Thomas
2012 ◽  
Vol 174-177 ◽  
pp. 144-147
Author(s):  
Lu Guang Song ◽  
Wei Sun ◽  
Jian Ming Gao

This paper studied the influence of water to binder ratio to time dependent diffusion coefficients in concrete exposed to marine environments. And a refined diffusion model which considered the time dependent apparent diffusion coefficients and time dependent surface chloride concentration was established. It was found that both apparent diffusion coefficients and surface chloride concentration are time dependent and both are significantly influenced by water to binder ratio. Apparent diffusion decrease with time while surface chloride concentration increase with time. but water to binder ratio has similar influence to the constant of time dependent diffusion coefficients and the parameter of time dependent surface chloride concentration.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ki-Bong Park ◽  
Han-Seung Lee ◽  
Xiao-Yong Wang

The chloride diffusion coefficient is considered to be a key factor for evaluating the service life of ground-granulated blast-furnace slag (GGBS) blended concrete. The chloride diffusion coefficient relates to both the concrete mixing proportions and curing ages. Due to the continuous hydration of the binders, the capillary porosity of the concrete decreases and the chloride diffusion coefficient also decreases over time. To date, the dependence of chloride diffusivity on the binder hydration and curing ages of slag-blended concrete has not been considered in detail. To fill this gap, this study presents a numerical procedure to predict time-dependent chloride diffusion coefficients for slag-blended concrete. First, by using a blended cement hydration model, the degree of the binder reaction for hardening concrete can be calculated. The effects of the water to binder ratios and slag replacement ratios on the degree of the binder reaction are considered. Second, by using the degree of the binder reaction, the capillary porosity of the binder paste at different curing ages can be determined. Third, by using the capillary porosity and aggregate volume, the chloride diffusion coefficients of concrete can be calculated. The proposed numerical procedure has been verified using the experimental results of concrete with different water to binder ratios, slag replacement ratios, and curing ages.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 99 ◽  
Author(s):  
Kazuma Yamanaka ◽  
Takayuki Narumi ◽  
Megumi Hashiguchi ◽  
Hirotaka Okabe ◽  
Kazuhiro Hara ◽  
...  

The properties of chaotic advection arising from defect turbulence, that is, weak turbulence in the electroconvection of nematic liquid crystals, were experimentally investigated. Defect turbulence is a phenomenon in which fluctuations of convective rolls arise and are globally disturbed while maintaining convective rolls locally. The time-dependent diffusion coefficient, as measured from the motion of a tagged particle driven by the turbulence, was used to clarify the dependence of the type of diffusion on coarse-graining time. The results showed that, as coarse-graining time increases, the type of diffusion changes from superdiffusion → subdiffusion → normal diffusion. The change in diffusive properties over the observed timescale reflects the coexistence of local order and global disorder in the defect turbulence.


1974 ◽  
Vol 64 (6) ◽  
pp. 706-729 ◽  
Author(s):  
W. R. Redwood ◽  
E. Rall ◽  
W. Perl

The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes.


2017 ◽  
Author(s):  
M. Victoria Carpio-Bernido ◽  
Wilson I. Barredo ◽  
Christopher C. Bernido

Sign in / Sign up

Export Citation Format

Share Document