Contrasting origin of palaeofluids in a strike-slip fault system

1998 ◽  
Vol 145 (1-2) ◽  
pp. 105-114 ◽  
Author(s):  
Philippe Muchez ◽  
Manuel Sintubin
2018 ◽  
Author(s):  
Emanuela Falcucci ◽  
Maria Eliana Poli ◽  
Fabrizio Galadini ◽  
Giancarlo Scardia ◽  
Giovanni Paiero ◽  
...  

Abstract. We investigated the eastern corner of northeastern Italy, where the NW-SE trending dextral strike-slip fault systems of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps . The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw = 6.4 and 6.1 respectively. The Colle Villano thrust and the Borgo Faris-Cividale strike-slip fault have been first analyzed by interpreting industrial seismic lines and then by performing morpho-tectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information, and the location of the investigated fault system suggest its activation during the 1511 earthquake.


Geology ◽  
2004 ◽  
Vol 32 (10) ◽  
pp. 837 ◽  
Author(s):  
Charles K. Wilson ◽  
Craig H. Jones ◽  
Peter Molnar ◽  
Anne F. Sheehan ◽  
Oliver S. Boyd

The 1:500,000 coloured geological map of the traverse route combines observations from the Geotraverse, previous mapping, and interpretation of orbital images. The position of all localities visited by Geotraverse participants and basic geological data collected by them along the traverse route are shown on a set of maps originally drawn at 1:100,000 scale, reproduced on microfiche for this publication. More detailed mapping, beyond a single line of section, was achieved in five separate areas. The relationships between major rock units in these areas, and their significance, are outlined in this paper. Near Gyanco, (Lhasa Terrane) an ophiolite nappe, apparently connected with outcrops of ophiolites in the Banggong Suture about 100 km to the north, was under thrust by a discontinuous slice of Carboniferous—Permian clastic rocks and limestone, contrary to a previous report of the opposite sequence. At Amdo, a compressional left-lateral strike-slip fault zone has modified relationships along the Banggong Suture. Near Wuli, (northern Qiangtang Terrane) limited truncation of Triassic strata at the angular unconformity below Eocene redbeds demonstrates that most of the folding here is of Tertiary age. The map of the nearby Erdaogou region displays strong fold and thrust-shortening of the Eocene redbeds, evidence of significant crustal shortening after the India- Asia collision began. In the Xidatan-Kunlun Pass area, blocks of contrasting Permo—Triassic rocks are separated by east-trending faults. Some of these faults are ductile and of late Triassic — early Jurassic age, others are brittle and part of the Neogene—Quaternary Kunlun leftlateral strike-slip fault system. Some more significant remaining problems that geological mapping might help to solve are discussed briefly, including evidence for a possible additional ophiolitic suture within the Qiangtang Terrane.


Sign in / Sign up

Export Citation Format

Share Document