Intermolecular forces from asymptotically corrected density functional description of monomers

2002 ◽  
Vol 357 (3-4) ◽  
pp. 301-306 ◽  
Author(s):  
Alston J. Misquitta ◽  
Krzysztof Szalewicz
2020 ◽  
Author(s):  
Peter A. Banks ◽  
Jefferson Maul ◽  
Mark T. Mancini ◽  
Adam C. Whalley ◽  
Alessandro Erba ◽  
...  

The thermomechanical response of organic semiconducting solids is an essential aspect to consider in the design of materials for advanced applications, and in particular, flexible electronics. The non-covalent intermolecular forces that exist in organic solids not only result in a diverse set of mechanical properties, but also a critical dependence of those same properties on temperature. However, studying the thermoelastic response of solids is experimentally challenging, often requiring large single-crystals and sensitive experimental apparatus. An alternative contactless approach involves using low-frequency vibrational spectroscopy to characterize the underlying intermolecular forces, and then combining this information with solid-state density functional theory simulations to retrieve the mechanical response of materials. This methodology leverages recent advances in the quasi-harmonic approximation to predict the temperature evolution of crystalline structures, dynamics, and associated forces, and then utilizes this information to determine the elastic tensor as a function of temperature. Here, this methodology is illustrated for two prototypical organic semiconducting crystals, rubrene and BTBT, and suggests a new alternative means to characterizing the thermoelastic response of organic materials.


2020 ◽  
Vol 644 ◽  
pp. A146
Author(s):  
Tao Chen ◽  
Yang Wang

Context. Polycyclic aromatic hydrocarbons (PAHs) and fullerenes are the largest molecules found in the interstellar medium (ISM). They are abundant and widespread in various astronomical environments. However, the detailed connection between these two species is unknown; in particular, no quantum chemical studies have been performed. Aims. In this work, we investigate a vital step in transforming planar PAHs to fullerenes, that is, the tubulation processes of PAHs. Methods. We used density functional theory for this study. The molecular structures and vibrational frequencies were calculated using the hybrid density functional B3LYP method. To better describe intermolecular forces, we considered Grimme’s dispersion correction in the calculations for this work. Intrinsic reaction coordinate calculations were also performed to confirm that the transition state structures are connected to their corresponding local potential energy surface minima. Results. As expected, we find that it is easier to bend a molecule as it gets longer, whereas it is harder to bend the molecule if it gets “wider” (i.e., with more rows of benzene rings). The change of multiplicity slightly alters the bending energies, while (a complete) dehydrogenation alleviates the bending barrier significantly and facilitates the formation of pentagons, which may act as an indispensable step in the formation of fullerenes in the ISM.


2020 ◽  
Author(s):  
Peter Banks ◽  
Zihui Song ◽  
Michael Ruggiero

The low-frequency (terahertz) dynamics of condensed phase materials provide valuable insight into numerous bulk phenomena. However, the assignment and interpretation of experimental results requires computational methods due to the complex mode-types that depend on weak intermolecular forces. Solid-state density functional theory has been used in this regard with great success, yet the selection of specific computational parameters, namely the chosen basis set and density functional, has a profound influence on the accuracy of predicted spectra. In this work, the role of these two parameters is investigated in a series of organic molecular crystals, in order to assess the ability of various methods to reproduce intermolecular forces, and subsequently experimental terahertz spectra. Specifically, naphthalene, oxalic acid, and thymine were chosen based on the varied intermolecular interactions present in each material. The results highlight that unconstrained geometry optimizations can be used as an initial proxy for the accuracy of interatomic forces, with errors in the calculated geometries indicative of subsequent errors in the calculated low-frequency vibrational spectra, providing a powerful metric for the validation of theoretical results. Finally, the origins of the observed shortcomings are analyzed, providing a basic framework for further studies on related materials.


2018 ◽  
Vol 116 (21-22) ◽  
pp. 2773-2791 ◽  
Author(s):  
Maxime M. C. Tortora ◽  
Jonathan P. K. Doye

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4387 ◽  
Author(s):  
Vladyslav Savchenko ◽  
Markus Koch ◽  
Aleksander S. Pavlov ◽  
Marina Saphiannikova ◽  
Olga Guskova

In this paper, the columnar supramolecular aggregates of photosensitive star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core and azobenzene arms are analyzed theoretically by applying a combination of computer simulation techniques. Without a light stimulus, the azobenzene arms adopt the trans-state and build one-dimensional columns of stacked molecules during the first stage of the noncovalent association. These columnar aggregates represent the structural elements of more complex experimentally observed morphologies—fibers, spheres, gels, and others. Here, we determine the most favorable mutual orientations of the trans-stars in the stack in terms of (i) the π – π distance between the cores lengthwise the aggregate, (ii) the lateral displacements due to slippage and (iii) the rotation promoting the helical twist and chirality of the aggregate. To this end, we calculate the binding energy diagrams using density functional theory. The model predictions are further compared with available experimental data. The intermolecular forces responsible for the stability of the stacks in crystals are quantified using Hirshfeld surface analysis. Finally, to characterize the self-assembly mechanism of the stars in solution, we calculate the hydrogen bond lengths, the normalized dipole moments and the binding energies as functions of the columnar length. For this, molecular dynamics trajectories are analyzed. Finally, we conclude about the cooperative nature of the self-assembly of star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document