Spatial aliasing of the international ten-twenty system

1997 ◽  
Vol 103 (1) ◽  
pp. 158
Author(s):  
D Tucker
Keyword(s):  
2009 ◽  
Vol 57 (4) ◽  
pp. 1383-1395 ◽  
Author(s):  
J. Dmochowski ◽  
J. Benesty ◽  
S. Affes

1997 ◽  
Vol 23 (3) ◽  
pp. 217-224 ◽  
Author(s):  
J. H. Citriniti ◽  
W. K. George
Keyword(s):  
Hot Wire ◽  

2010 ◽  
Vol 2010 (1) ◽  
pp. 1-4
Author(s):  
Mohammad J. Khoshnavaz ◽  
Hamid R. Siahkoohi
Keyword(s):  

2020 ◽  
Vol 71 (3) ◽  
pp. 150-164
Author(s):  
Ali Dehghan Firoozabadi ◽  
Pablo Irarrazaval ◽  
Pablo Adasme ◽  
David Zabala-Blanco ◽  
Cesar Azurdia-Meza

AbstractMultiple sound source localization in noisy and reverberant conditions is one of the important challenges in the speech signal processing. The aim of this article is three-dimensional sound source localization in undesirable scenarios. For the localization algorithms, the spatial aliasing is one of the destructive factors in reducing the accuracy. Firstly, a 3D quasi-spherical nested microphone array (QSNMA) is proposed for eliminating the spatial aliasing. Since the speech signal has the windowed-disjoint orthogonality property, the speech information differs in terms of the frequency bands. Then, the Gammatone filter bank is introduced for the speech subband processing. In the following, the multiresolution steered response power (SRP) algorithm is adaptively implemented on subbands with the phase transform (PHAT)/maximum likelihood (ML) weighted functions based on the levels of the noise and reverberation. The peaks of the multiresolution adaptive SRP (MASRP) algorithm are extracted in each subband based on the number of speakers for continuous time frames. Finally, the distribution of these peaks are calculated in each subband and they are merged by the use of weighted averaging method. The final 3D speakers locations are estimated by extracting the peaks in the final distribution. The proposed QSNMAMASRP(PHAT/ML) algorithm is evaluated on real and simulated data for 2 and 3 simultaneous speakers in noisy and reverberant conditions. The proposed method is compared with SRP-PHAT, spectral source model-deep neural network, and spherical harmonic temporal extension of multiple response model sparse Bayesian learning algorithms on different range of signal-to-noise ratio and reverberation time. The mean absolute estimation error, averaged standard deviation for absolute estimation error, and computational complexity results show the superiority of the proposed method.


2020 ◽  
Vol 26 (4) ◽  
pp. 95-107
Author(s):  
Vladimir Sinđelić ◽  
Snežana Ćirić-Kostić ◽  
Aleksandar Nikolić ◽  
Zlatan Šoškić

The dispersion relation is the key for studies of wave propagation. The experimental determination of a dispersion relation by measurements of wave properties in different points in space meets the challenge of spatial aliasing, which is further augmented by numerical instability of calculations. This paper presents and discusses a concept aimed to overcome the spatial aliasing problem in measurements of dispersion relation of mechanical waves propagating through beams. The concept is based on the properties of the dispersion relationship and it may be extended to the case of all other waves with monotonous dispersion relationship.


2009 ◽  
Vol 27 (8) ◽  
pp. 3031-3042 ◽  
Author(s):  
Y. Narita ◽  
K.-H. Glassmeier

Abstract. Aliasing is a general problem in the analysis of any measurements that make sampling at discrete points. Sampling in the spatial domain results in a periodic pattern of spectra in the wave vector domain. This effect is called spatial aliasing, and it is of particular importance for multi-spacecraft measurements in space. We first present the theoretical background of aliasing problems in the frequency domain and generalize it to the wave vector domain, and then present model calculations of spatial aliasing. The model calculations are performed for various configurations of the reciprocal vectors and energy spectra or distribution that are placed at different positions in the wave vector domain, and exhibit two effects on aliasing. One is weak aliasing, in which the true spectrum is distorted because of non-uniform aliasing contributions in the Brillouin zone. It is demonstrated that the energy distribution becomes elongated in the shortest reciprocal lattice vector direction in the wave vector domain. The other effect is strong aliasing, in which aliases have a significant contribution in the Brillouin zone and the energy distribution shows a false peak. These results give a caveat in multi-spacecraft data analysis in that spectral anisotropy obtained by a measurement has in general two origins: (1) natural and physical origins like anisotropy imposed by a mean magnetic field or a flow direction; and (2) aliasing effects that are imposed by the configuration of the measurement array (or the set of reciprocal vectors). This manuscript also discusses a possible method to estimate aliasing contributions in the Brillouin zone based on the measured spectrum and to correct the spectra for aliasing.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. V457-V471
Author(s):  
Thomas Andre Larsen Greiner ◽  
Volodya Hlebnikov ◽  
Jan Erik Lie ◽  
Odd Kolbjørnsen ◽  
Andreas Kjelsrud Evensen ◽  
...  

Seismic exploration in complex geologic settings and shallow geologic targets has led to a demand for higher spatial and temporal resolution in the final migrated image. Conventional marine seismic and wide-azimuth data acquisition lack near-offset coverage, which limits imaging in these settings. A new marine source-over-cable survey, with split-spread configuration, known as TopSeis, was introduced in 2017 to address the shallow-target problem. However, wavefield reconstruction in the near offsets is challenging in the shallow part of the seismic record due to the high temporal frequencies and coarse sampling that leads to severe spatial aliasing. We have investigated deep learning as a tool for the reconstruction problem, beyond spatial aliasing. Our method is based on a convolutional neural network (CNN) approach trained in the wavelet domain that is used to reconstruct the wavefield across the streamers. We determine the performance of the proposed method on broadband synthetic data and TopSeis field data from the Barents Sea. From our synthetic example, we find that the CNN can be learned in the inline direction and applied in the crossline direction, and that the approach preserves the characteristics of the geologic model in the migrated section. In addition, we compare our method to an industry-standard Fourier-based interpolation method, in which the CNN approach shows an improvement in the root-mean-square (rms) error close to a factor of two. In our field data example, we find that the approach reconstructs the wavefield across the streamers in the shot domain, and it displays promising characteristics of a reconstructed 3D wavefield.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. B193-B205
Author(s):  
Tobias Maia Rabelo Fonte-Boa ◽  
Aline Tavares Melo ◽  
Tiago Amâncio Novo

Linear features at an acute angle with the flight direction are imaged as a series of aligned circular anomalies in the images of Area 15 aeromagnetic survey, which covered part of the Brazilian southeastern region. These features are interpolation artifacts, a recurring problem found in airborne magnetic images that cause problems for qualitative and quantitative geophysical-geologic interpretation. This imaging problem is attributed to spatial aliasing. By running simulations of magnetic data on a synthetic model, we have physically demonstrated that the interpolation artifacts from Area 15 are due to inappropriate survey design. Besides the most common expression of artifacts, we described a geologically noncoherent linear pattern as a new type of artifact. Supported by spectral analyses, we found that the Area 15 aliased spectrum is similar to geologic high-frequency magnetic features, which constitutes a motive for unearthing the correct geophysical signal. Thus, we made use of four techniques for removing the artifacts. The trend enforcement method partially improved the images, whereas the inverse interpolation method was ineffective, apparently because Area 15 data are severely aliased. The constrained coherence diffusion and multitrend gridding methods were able to significantly reduce the presence of artifacts. Despite the high-frequency attenuation, these tools adequately enhanced the magnetic trends and minimized the artifacts. Therefore, the improved images are better suited for reliable geologic interpretation.


Sign in / Sign up

Export Citation Format

Share Document