Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro

2000 ◽  
Vol 397 (2-3) ◽  
pp. 263-270 ◽  
Author(s):  
Fraser Murray ◽  
Jeffrey Kennedy ◽  
Peter H Hutson ◽  
Jason Elliot ◽  
Ian Huscroft ◽  
...  
Keyword(s):  
2009 ◽  
Vol 4 (3) ◽  
pp. 321-326
Author(s):  
Elena Kosenko ◽  
Yury Kaminsky

AbstractMitochondrial enzyme monoamine oxidase A (MAO-A) generates hydrogen peroxide (H2O2) and is up-regulated by Ca2+ and presumably by ammonia. We hypothesized that MAO-A may be under the control of NMDA receptors in hyperammonemia. In this work, the in vivo effects of single dosing with ammonia and NMDA receptor antagonist MK-801 and the in vitro effect of Ca2+ on MAO-A activity in isolated rat brain mitochondria were studied employing enzymatic procedure. Intraperitoneal injection of rats with ammonia led to an increase in MAO-A activity in mitochondria indicating excessive H2O2 generation. Calcium added to isolated mitochondria stimulated MAO-A activity by as much as 84%. MK-801 prevented the in vivo effect of ammonia, implying that MAO-A activation in hyperammonemia is mediated by NMDA receptors. These data support the conclusion that brain mitochondrial MAO-A is regulated by the function of NMDA receptors. The enzyme can contribute to the oxidative stress associated with hyperammonemic conditions such as encephalopathy and Alzheimer’s disease. The attenuation of the oxidative stress highlights MAO-A inactivation and NMDA receptor antagonists as sources of novel avenues in the treatment of mental disorders.


2007 ◽  
Vol 98 (4) ◽  
pp. 2324-2336 ◽  
Author(s):  
Adriano Augusto Cattani ◽  
Valérie Delphine Bonfardin ◽  
Alfonso Represa ◽  
Yehezkel Ben-Ari ◽  
Laurent Aniksztejn

Cell-surface glutamate transporters are essential for the proper function of early cortical networks because their dysfunction induces seizures in the newborn rat in vivo. We have now analyzed the consequences of their inhibition by dl-TBOA on the activity of the developing CA1 rat hippocampal network in vitro. dl-TBOA generated a pattern of recurrent depolarization with an onset and decay of several seconds' duration in interneurons and pyramidal cells. These slow network oscillations (SNOs) were mostly mediated by γ-aminobutyric acid (GABA) in pyramidal cells and by GABA and N-methyl-d-aspartate (NMDA) receptors in interneurons. However, in both cell types SNOs were blocked by NMDA receptor antagonists, suggesting that their generation requires a glutamatergic drive. Moreover, in interneurons, SNOs were still generated after the blockade of NMDA-mediated synaptic currents with MK-801, suggesting that SNOs are expressed by the activation of extrasynaptic NMDA receptors. Long-lasting bath application of glutamate or NMDA failed to induce SNOs, indicating that they are generated by periodic but not sustained activation of NMDA receptors. In addition, SNOs were observed in interneurons recorded in slices with or without the strata pyramidale and oriens, suggesting that the glutamatergic drive may originate from the radiatum and pyramidale strata. We propose that in the absence of an efficient transport of glutamate, the transmitter diffuses in the extracellular space to activate extrasynaptic NMDA receptors preferentially present on interneurons that in turn activate other interneurons and pyramidal cells. This periodic neuronal coactivation may contribute to the generation of seizures when glutamate transport dysfunction is present.


2009 ◽  
Vol 106 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Yuzhen Liu ◽  
En-Sheng Ji ◽  
Shuanglin Xiang ◽  
Renaud Tamisier ◽  
Jingli Tong ◽  
...  

Although large quantities of glutamate are found in the carotid body, to date this excitatory neurotransmitter has not been assigned a role in chemoreception. To examine the possibility that glutamate and its N-methyl-d-aspartate (NMDA) receptors play a role in acclimatization after exposure to cyclic intermittent hypoxia (CIH), we exposed male Sprague-Dawley rats to cyclic hypoxia or to room air sham (Sham) for 8 h/day for 3 wk. Using RT-PCR, Western blot analysis, and immunohistochemistry, we found that ionotropic NMDA receptors, including NMDAR1, NMDAR2A, NMDAR2A/2B, are strongly expressed in the carotid body and colocalize with tyrosine hydroxylase in glomus cells. CIH exposure enhanced the expression of NMDAR1 and NMDAR2A/2B but did not substantially change the level of NMDAR2A. We assessed in vivo carotid sinus nerve activity (CSNA) at baseline, in response to acute hypoxia, in response to infused NMDA, and in response to infused endothelin-1 (ET-1) with and without MK-801, an NMDA receptor blocker. Infusion of NMDA augmented CSNA in CIH rats (124.61 ± 2.64% of baseline) but not in sham-exposed rats. Administration of MK-801 did not alter baseline activity or response to acute hypoxia, in either CIH or sham animals but did reduce the effect of ET-1 infusion on CSNA (CSNA after ET-1 = 160.96 ± 8.05% of baseline; ET-1 after MK-801 = 118.56 ± 9.12%). We conclude that 3-wk CIH exposure increases expression of NMDA functional receptors in rats, suggesting glutamate and its receptors may play a role in hypoxic acclimatization to CIH.


2019 ◽  
Vol 316 (6) ◽  
pp. C815-C827 ◽  
Author(s):  
Yinyan Yue ◽  
Ziqiang Luo ◽  
Zhengchang Liao ◽  
Liming Zhang ◽  
Shuai Liu ◽  
...  

We studied the role of bone marrow mesenchymal stem cells (MSCs) in our established model of bronchopulmonary dysplasia (BPD) induced by intrauterine hypoxia in the rat. First, we found that intrauterine hypoxia can reduce the number of MSCs in lungs and bone marrow of rat neonates, whereas the administration of granulocyte colony-stimulating factor or busulfan to either motivate or inhibit bone marrow MSCs to lungs altered lung development. Next, in vivo experiments, we confirmed that intrauterine hypoxia also impaired bone marrow MSC proliferation and decreased cell cycling activity. In vitro, by using the cultured bone marrow MSCs, the proliferation and the cell cycling activity of MSCs were also reduced when N-methyl-d-aspartic acid (NMDA) was used as an NMDA receptor (NMDAR) agonist. When MK-801 or memantine as NMDAR antagonists in vitro or in vivo was used, the reduction of cell cycling activity and proliferation were partially reversed. Furthermore, we found that intrauterine hypoxia could enhance the concentration of glutamate, an amino acid that can activate NMDAR, in the bone marrow of neonates. Finally, we confirmed that the increased concentration of TNF-ɑ in the bone marrow of neonatal rats after intrauterine hypoxia induced the release of glutamate and reduced the cell cycling activity of MSCs, and the latter could be partially reversed by MK-801. In summary, intrauterine hypoxia could decrease the number of bone marrow MSCs that could affect lung development and lung function through excessive activation of NMDAR that is partially caused by TNF-ɑ.


1988 ◽  
Vol 145 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Stephen N. Davies ◽  
David Martin ◽  
John D. Millar ◽  
Julia A. Aram ◽  
John Church ◽  
...  

1999 ◽  
Vol 354 (1381) ◽  
pp. 395-402 ◽  
Author(s):  
Dimitri M. Kullmann ◽  
Ming-Yuan Min ◽  
Fredrik Asztely ◽  
Dmitri A. Rusakov

Following exocytosis at excitatory synapses in the brain, glutamate binds to several subtypes of postsynaptic receptors. The degree of occupancy of AMPA and NMDA receptors at hippocampal synapses is, however, not known. One approach to estimate receptor occupancy is to examine quantal amplitude fluctuations of postsynaptic signals in hippocampal neurons studied in vitro . The results of such experiments suggest that NMDA receptors at CA1 synapses are activated not only by glutamate released from the immediately apposed presynaptic terminals, but also by glutamate spillover from neighbouring terminals. Numerical simulations point to the extracellular diffusion coefficient as a critical parameter that determines the extent of activation of receptors positioned at different distances from the release site. We have shown that raising the viscosity of the extracellular medium can modulate the diffusion coefficient, providing an experimental tool to investigate the role of diffusion in activation of synaptic and extrasynaptic receptors. Whether intersynaptic cross–talk mediated by NMDA receptors occurs in vivo remains to be determined. The theoretical and experimental approaches described here also promise to shed light on the roles of metabotropic and kainate receptors, which often occur in an extrasynaptic distribution, and are therefore positioned to sense glutamate escaping from the synaptic cleft.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhengchang Liao ◽  
Xiaocheng Zhou ◽  
Ziqiang Luo ◽  
Huiyi Huo ◽  
Mingjie Wang ◽  
...  

Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs) are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR’s expression and role in fetal lung development.Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E) 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801’s influence on intrauterine hypoxia-induced retardation of fetal lung development was testedin vivo, and NMDA’s direct effect on fetal lung development was observed using fetal lung organ culturein vitro.Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damagein vivo.In vitroexperiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression.Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development.


2007 ◽  
Vol 53 (4) ◽  
pp. 515-523 ◽  
Author(s):  
Takashi Masuko ◽  
Yuta Nemoto ◽  
Hiroki Nagaoka ◽  
Muneharu Miyake ◽  
Yasuo Kizawa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document