γ-MSH increases intracellular cAMP accumulation and GnRH release in vitro and LH release in vivo

FEBS Letters ◽  
2003 ◽  
Vol 543 (1-3) ◽  
pp. 66-70 ◽  
Author(s):  
S.A. Stanley ◽  
S. Davies ◽  
C.J. Small ◽  
J.V. Gardiner ◽  
M.A. Ghatei ◽  
...  
2005 ◽  
Vol 289 (2) ◽  
pp. H960-H967 ◽  
Author(s):  
Yuan-Lin Dong ◽  
Sujatha Vegiraju ◽  
Chandrasekhar Yallampalli

CGRP is a potent vasodilator with increased levels in fetoplacental circulation during late pregnancy. We have recently demonstrated that acute CGRP exposure to fetoplacental vessels in vitro induced vascular relaxation, but the signaling pathway of CGRP in fetoplacental vasculature remains unclear. We hypothesized that CGRP relaxes fetoplacental vasculature via regulating smooth muscle cytosolic Ca2+ concentrations. In the present study, by using human umbilical vein smooth muscle (HUVS) cells (HUVS-112D), we examined CGRP receptors, cAMP generation, and changes in cellular Ca2+ concentrations on CGRP treatment. These cells express mRNA for CGRP receptor components, calcitonin receptor-like receptor, and receptor activity-modifying protein-1. Direct saturation binding for 125I-labeled CGRP to HUVS cells and Scatchard analysis indicate specificity of the receptors for CGRP [dissociation constant ( KD) = 67 nM, maximum binding capcity (Bmax) = 2.7 pmol/million cells]. Exposure of HUVS cells to CGRP leads to a dose-dependent increase in intracellular cAMP accumulation, and this increase is prevented by CGRP antagonist CGRP8–37. Using fura-2-loaded HUVS cells, we monitored the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]i). In the presence of extracellular Ca2+, bradykinin (10−6 M), a fetoplacental vasoconstrictor, increases HUVS cells [Ca2+]i concentration. CGRP (10−8 M) abolishes bradykinin-induced [Ca2+]i elevation. When the cells were pretreated with glibenclamide, an ATP-sensitive potassium channel blocker, the CGRP actions on bradykinin-induced Ca2+ influx were profoundly inhibited. In the absence of extracellular Ca2+, CGRP (10−8 M) attenuated the increase of [Ca2+]i induced by a sarcoplasmic reticulum Ca2+ pump ATPase inhibitor thapsigargin (10−5 M). Furthermore, Rp-cAMPS, a cAMP-dependent protein kinase A inhibitor, blocks CGRP actions on thapsigargin-induced Ca2+ release from sarcoplasmic reticulum. Our results suggested that CGRP relaxes human fetoplacental vessels by not only inhibiting the influx of extracellular Ca2+ but also attenuating the release of intracellular Ca2+ from the sarcoplasmic reticulum, and these actions might be attributed to CGRP-induced intracellular cAMP accumulation.


2016 ◽  
Vol 311 (5) ◽  
pp. C768-C776 ◽  
Author(s):  
Renato O. Crajoinas ◽  
Juliano Z. Polidoro ◽  
Carla P. A. Carneiro de Morais ◽  
Regiane C. Castelo-Branco ◽  
Adriana C. C. Girardi

Binding of angiotensin II (ANG II) to the AT1 receptor (AT1R) in the proximal tubule stimulates Na+/H+ exchanger isoform 3 (NHE3) activity through multiple signaling pathways. However, the effects of ANG II/AT1R-induced inihibitory G protein (Gi) activation and subsequent decrease in cAMP accumulation on NHE3 regulation are not well established. We therefore tested the hypothesis that ANG II reduces cAMP/PKA-mediated phosphorylation of NHE3 on serine 552 and, in doing so, stimulates NHE3 activity. Under basal conditions, ANG II stimulated NHE3 activity but did not affect PKA-mediated NHE3 phosphorylation at serine 552 in opossum kidney (OKP) cells. However, in the presence of the cAMP-elevating agent forskolin (FSK), ANG II blocked FSK-induced NHE3 inhibition, reduced intracellular cAMP concentrations, lowered PKA activity, and prevented the FSK-mediated increase in NHE3 serine 552 phosphorylation. All effects of ANG II were blocked by pretreating OKP cells with the AT1R antagonist losartan, highlighting the contribution of the AT1R/Gi pathway in ANG II-mediated NHE3 upregulation under cAMP-elevating conditions. Accordingly, Gi inhibition by pertussis toxin treatment decreased NHE3 activity both in vitro and in vivo and, more importantly, prevented the stimulatory effect of ANG II on NHE3 activity in rat proximal tubules. Collectively, our results suggest that ANG II counteracts the effects of cAMP/PKA on NHE3 phosphorylation and inhibition by activating the AT1R/Gi pathway. Moreover, these findings support the notion that NHE3 dephosphorylation at serine 552 may represent a key event in the regulation of renal proximal tubule sodium handling by ANG II in the presence of natriuretic hormones that promote cAMP accumulation and transporter phosphorylation.


1980 ◽  
Vol 58 (11) ◽  
pp. 2163-2166 ◽  
Author(s):  
F. Edward Dudek ◽  
Amd Bonnie Soutar ◽  
Stephen S. Tobe

Aspects of egg laying by isolated Aplysia californica and egg release from ovotestis fragments were compared under laboratory conditions. The volume of eggs laid per episode increased as a function of time since the previous episode of egg laying. Egg output in vivo and egg release in vitro were maximal in autumn and minimal in spring, but a factor in the parietovisceral ganglion evoked egg release from ovotestis fragments throughout the year. These data are consistent with previous studies which have suggested that the effects of season and egg-laying history on egg laying involve substantial changes in the ovotestis.


Orthopedics ◽  
2009 ◽  
Vol 32 (1) ◽  
pp. 27-6 ◽  
Author(s):  
Zhiping Yang ◽  
Dong Li ◽  
Jian Han ◽  
Jianmin Li ◽  
Xin Li ◽  
...  

1982 ◽  
Vol 243 (2) ◽  
pp. G117-G126
Author(s):  
R. Fogel ◽  
G. W. Sharp ◽  
M. Donowitz

The effects of chloroquine diphosphate, a drug with "'membrane-stabilizing" properties, were studied on basal ileal absorption and on ileal secretion induced by increased intracellular cAMP levels and calcium (serotonin). The studies were performed on rat (in vivo) and rabbit ileum (in vitro). Intraluminal chloroquine (10(-4) M) reversed cholera toxin- and theophylline-induced secretion in rat ileum but did not alter the cholera toxin- and theophylline-induced increases in cAMP content. Addition of chloroquine (10(-4) M) to the mucosal surface of rabbit ileum did not alter basal active electrolyte transport or the serotonin-induced decreased Na and Cl absorption but inhibited the theophylline-induced C1 secretion. Addition of chloroquine (10(-4)) M) to the serosal surface stimulated net Na and Cl absorption. This effect may involve intracellular calcium. Chloroquine increased the rabbit ileal calcium content and decreased 45Ca2+ influx from the serosal surface. Both the mucosal and serosal effects of chloroquine described led to a net increase in absorptive function of the intestine and should prove useful in developing treatment of diarrheal diseases.


1995 ◽  
Vol 269 (1) ◽  
pp. H239-H245
Author(s):  
K. Nakagawa ◽  
F. N. Miller ◽  
A. W. Knott ◽  
M. J. Edwards

The acute inflammatory responses to the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) and the effects of pentoxifylline (PTXF) on the responses in vivo were studied. We used intravital microscopy with rat cremaster muscle preparation to determine inflammatory responses of microcirculation. Macromolecular leakage from postcapillary venules was evaluated by quantifying the extravasation of fluorescein isothiocyanate conjugated to bovine serum albumin. FMLP induced a rapid increase in macromolecular leakage, an increase in leukocyte-endothelium adhesion, and a decrease in blood flow in the microcirculation. PTXF inhibited FMLP-induced responses in a dose-dependent manner but failed to block the histamine-dependent leakage induced by compound 48/80. In addition, diphenhydramine, a histamine-receptor blocker, did not affect the macromolecular leakage induced by FMLP. The cell-permeable adenosine 3',5'-cyclic monophosphate (cAMP) analogue N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate mimicked PTXF's effects on the microcirculation and also inhibited FMLP-induced macromolecular leakage. PTXF is known to inhibit phosphodiesterase and increase intracellular cAMP, which modulates functions of endothelial cells, smooth muscle cells, and neutrophils in vitro. Our findings suggest that FMLP induces acute inflammatory responses through activation of neutrophils, independent of endogenous histamine release, and that PTXF inhibits these responses through elevated intracellular cAMP.


1988 ◽  
Vol 255 (6) ◽  
pp. F1107-F1115
Author(s):  
W. B. Jeffries ◽  
R. Fallet ◽  
G. D. Gong ◽  
P. Van Dreal ◽  
W. A. Pettinger

The putative role of the inhibitory guanine nucleotide binding protein (Gi) in modulating the renal response to vasopressin was investigated using islet activating protein (IAP). IAP treatment in rats in vivo abolished the capacity of alpha 2-adrenoceptors to reverse vasopressin-induced adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in microdissected cortical collecting tubule (CCT) segments. IAP pretreatment also caused a marked upward shift in the dose-response curve of vasopressin (10(-10) to 10(-4) M)-induced cAMP accumulation. Augmentation of the response to vasopressin in rat CCT was dependent on the in vivo dose of IAP and paralleled the loss in alpha 2-adrenoceptor responsiveness. In the isolated perfused kidney the antinatriuretic and antidiuretic effects of the V2-receptor agonist desamino-8-D-arginine vasopressin (DDAVP) (1 pM) were enhanced following IAP pretreatment. alpha 2-Adrenoceptor stimulation (30 nM epinephrine) inhibited the renal effects of DDAVP (1 pM) in kidneys from control but not IAP-pretreated rats. Interestingly, IAP pretreatment alone caused increased urine flow rate and enhanced excretion of sodium and chloride without affecting potassium excretion or renal hemodynamics in vitro. Our results suggest that an IAP substrate, probably Gi, 1) is required for signal transduction by renal alpha 2-adrenoceptors, 2) may tonically modulate the response to vasopressin in the CCT but not of parathyroid hormone in the proximal convoluted tubule, and 3) participates in renal water and electrolyte reabsorption independent of exogenous adenylate cyclase stimulation.


Sign in / Sign up

Export Citation Format

Share Document