An essential role of NFκB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia

FEBS Letters ◽  
1998 ◽  
Vol 429 (3) ◽  
pp. 365-369 ◽  
Author(s):  
Nilanjana Maulik ◽  
Motoaki Sato ◽  
Brendan D. Price ◽  
Dipak K. Das
1998 ◽  
Vol 275 (5) ◽  
pp. H1857-H1864 ◽  
Author(s):  
Nilanjana Maulik ◽  
Tetsuya Yoshida ◽  
You-Li Zu ◽  
Motoaki Sato ◽  
Anirban Banerjee ◽  
...  

Myocardial adaptation to ischemia has been shown to activate protein tyrosine kinase, potentiating activation of phospholipase D, which leads to the stimulation of mitogen-activated protein (MAP) kinases and MAP kinase-activated protein (MAPKAP) kinase 2. The present study sought to further examine the signal transduction pathway for the MAPKAP kinase 2 activation during ischemic adaptation. Isolated perfused rat hearts were adapted to ischemic stress by repeated ischemia and reperfusion. Hearts were pretreated with genistein to block tyrosine kinase, whereas SB-203580 was used to inhibit p38 MAP kinases. Western blot analysis demonstrated that p38 MAP kinase is phosphorylated during ischemic stress adaptation. Phosphorylation of p38 MAP kinase was blocked by genistein, suggesting that activation of p38 MAP kinase during ischemic adaptation is mediated by a tyrosine kinase signaling pathway. MAPKAP kinase 2 was estimated by following in vitro phosphorylation with recombinant human heat shock protein 27 as specific substrate for MAPKAP kinase 2. Again, both genistein and SB-203580 blocked the activation of MAPKAP kinase 2 during myocardial adaptation to ischemia. Immunofluorescence microscopy with anti-p38-antibody revealed that p38 MAP kinase is primarily localized in perinuclear regions. p38 MAP kinase moves to the nucleus after ischemic stress adaptation. After ischemia and reperfusion, cytoplasmic striations in the myocytes become obvious, indicating translocation of p38 MAP kinase from nucleus to cytoplasm. Corroborating these results, myocardial adaptation to ischemia improved the left ventricular functions and reduced myocardial infarction that were reversed by blocking either tyrosine kinase or p38 MAP kinase. These results demonstrate that myocardial adaptation to ischemia triggers a tyrosine kinase-regulated signaling pathway, leading to the translocation and activation of p38 MAP kinase and implicating a role for MAPKAP kinase 2.


2003 ◽  
Vol 10 (4-6) ◽  
pp. 437-443 ◽  
Author(s):  
Takashi Kojima ◽  
Toshinobu Yamamoto ◽  
Masaki Murata ◽  
Mengdong Lan ◽  
Ken-ichi Takano ◽  
...  

1995 ◽  
pp. 1-14
Author(s):  
J. L. Bos ◽  
B. M. T. Burgering ◽  
G. J. Pronk ◽  
A. M. M. de Vries-Smits ◽  
J. P. Medema ◽  
...  

2000 ◽  
Vol 105 (2) ◽  
pp. 7-15 ◽  
Author(s):  
Michael Welsh ◽  
Cecilia Annerén ◽  
Cecilia Lindholm ◽  
Vitezslav Kriz ◽  
Charlotte Öberg-Welsh

Sign in / Sign up

Export Citation Format

Share Document