Effects of gonadotropin-releasing hormone (GnRH)-I and -II on regulating the urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor (PAI-1) in cultured human extravillous cytotrophoblasts

2002 ◽  
Vol 78 ◽  
pp. S102
Author(s):  
Chunshan Sam Chou ◽  
Eliezer Shalev ◽  
Hua Ellen Zhu ◽  
Colin D MacCalman ◽  
Peter C.K Leung
1996 ◽  
Vol 75 (06) ◽  
pp. 933-938 ◽  
Author(s):  
Marten Fålkenberg ◽  
Johan Tjärnstrom ◽  
Per Örtenwall ◽  
Michael Olausson ◽  
Bo Risberg

SummaryLocal fibrinolytic changes in atherosclerotic arteries have been suggested to influence plaque growth and promote mural thrombosis on ruptured or ulcerated plaques. Increased levels of plasminogen activator inhibitor (PAI-1) have been found in atherosclerotic arteries. In this study tissue plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA) and PAI-1 were localized in arterial biopsies of healthy and atherosclerotic vessels by immunohistochemis-try. The expression of fibrinolytic regulators was related to the distribution of endothelial cells (EC) and macrophages. Results: t-PA was expressed in vasa vasorum. PAI-1 was positive in endothelial cells, in the media and in the adventitia. Increased expression of t-PA, u-PA and PAI-1 was found in atherosclerotic vessels. t-PA, u-PA, PAI-1 and macrophages were co-localized in plaques. These results support the concept that macrophages can be important in the local regulation of fibrinolysis in atherosclerotic vessels.


2021 ◽  
Author(s):  
Zachary M Huttinger ◽  
Laura M Haynes ◽  
Andrew Yee ◽  
Colin A Kretz ◽  
David R Siemieniak ◽  
...  

The serine protease inhibitor (SERPIN) plasminogen activator inhibitor-1 (PAI-1) is a key regulator of the fibrinolytic system, inhibiting the serine proteases tissue- and urokinase-type plasminogen activator (tPA and uPA, respectively). Missense variants may render PAI-1 non-functional through misfolding, leading to its turnover as a protease substrate, or to a more rapid transition to the latent/inactive state. Deep mutational scanning was performed to evaluate the impact of amino acid sequence variation on PAI-1 inhibition of uPA using an M13 filamentous phage display system. The effects of single amino acid substitutions on PAI-1's functional inhibition of its canonical target proteases, tPA and uPA , have been determined for only a small fraction of potential mutations. To construct a more comprehensive dataset, a mutagenized PAI-1 library, encompassing ~70% of potential single amino acid substitutions, was displayed on M13 filamentous phage. From this library, the relative effects of 27% of all possible missense variants on PAI-1 inhibition of urokinase-type plasminogen activator were determined using high-throughput DNA sequencing with 826 missense variants demonstrating conserved inhibitory activity and 1137 resulting in loss of PAI-1 function. Comparison of these deep mutational scanning results to predictions from PolyPhen-2 and SIFT demonstrate the limitations of these algorithms, consistent with similar reports for other proteins. Comparison to common human PAI-1 gene variants present in the gnomAD database is consistent with evolutionary selection against loss of PAI-1 function. These findings provide insight into structure-function relationships for PAI-1 and other members of the SERPIN superfamily.


2004 ◽  
Vol 200 (12) ◽  
pp. 1657-1666 ◽  
Author(s):  
Guosheng Xiang ◽  
Michael D. Schuster ◽  
Tetsunori Seki ◽  
Alfred A. Kocher ◽  
Shawdee Eshghi ◽  
...  

Human adult bone marrow–derived endothelial progenitors, or angioblasts, induce neovascularization of infarcted myocardium via mechanisms involving both cell surface urokinase-type plasminogen activator, and interactions between β integrins and tissue vitronectin. Because each of these processes is regulated by plasminogen activator inhibitor (PAI)-1, we selectively down-regulated PAI-1 mRNA in the adult heart to examine the effects on postinfarct neovascularization and myocardial function. Sequence-specific catalytic DNA enzymes inhibited rat PAI-1 mRNA and protein expression in peri-infarct endothelium within 48 h of administration, and maintained down-regulation for at least 2 wk. PAI-1 inhibition enhanced vitronectin-dependent transendothelial migration of human bone marrow–derived CD34+ cells, and resulted in a striking augmentation of angioblast-dependent neovascularization. Development of large, thin-walled vessels at the peri-infarct region was accompanied by induction of proliferation and regeneration of endogenous cardiomyocytes and functional cardiac recovery. These results identify a causal relationship between elevated PAI-1 levels and poor outcome in patients with myocardial infarction through mechanisms that directly inhibit bone marrow–dependent neovascularization. Strategies that reduce myocardial PAI-1 expression appear capable of enhancing cardiac neovascularization, regeneration, and functional recovery after ischemic insult.


Sign in / Sign up

Export Citation Format

Share Document