Relationship between the degree of zona pellucida thickness variation of transferred embryos and clinical outcomes in IVF-ET cycles

2002 ◽  
Vol 78 ◽  
pp. S227
Author(s):  
Ying Zhou ◽  
Xuefeng Huang ◽  
Bilu Ye ◽  
Jinju Lin ◽  
Bingsen Xu
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
F Du ◽  
R Li ◽  
Q Zhang ◽  
W Wang

Abstract Study question what is the source, prevalence, and influence of microbial contamination on in vitro fertilization (IVF) and embryo transfer (ET) cycles? Summary answer Microbial contamination mainly occurs on Day 2, most caused by Escherichia coli carried with semen. ICSI could prevent contamination effectively and get good clinical outcomes. What is known already Microbial contamination occurs in IVF-ET system occasionally, which is hard to stop happening. The IVF culture system and laboratory environment, the patients’ follicular fluid and semen are not absolutely sterile, while the antibiotics in culture medium isn’t effective for all microbe types, and the artificial operations may bring in microbes. Generally, microbial contamination leads to degradation of embryos, reduction the number of embryos available, and infection of female reproductive tract, which would increase the cost of patients’ time, money, and bring psychological damages. A better understanding of embryo contamination in IVF culture system is of added value. Study design, size, duration A total of 29583 IVF-ET cycles were enrolled in this prospective observational study, from January 2010 to December 2020, included 70 microbial contamination cycles discovered in Day1-Day3 (D1-D3) of in vitro culture. Follicular fluid and semen saved on oocyte retrieval day, and culture medium contaminated were examined and identified for microorganisms at each contamination cycle. Participants/materials, setting, methods Compared the contamination rate of different insemination methods (IVF/ICSI/IVF+ICSI), different in vitro culture days (D1-D3), and different samples examination (follicular fluid, semen, culture medium) respectively, identified the source of microorganism types, compared the IVF culture outcomes and clinical outcomes between total contamination group (TC group, 42 cases) and partial contamination group (PC group, 28 cases). Main results and the role of chance A total of 70 microbial contamination cases occurred in 29583 oocyte retrieving cycles (0.24%), and it was observed only in IVF embryos but never in ICSI (Intracytoplasmic sperm injection) embryos. 38 contamination cases occurred on D2 with a highest ratio (54.3%) compared to D1 (32.9%) and D3(12.9%); Compared with follicular fluid, semen was the main cause inducing contamination from D1 to D3, and Escherichia coli in semen and culture medium, Enterococcus faecalis in follicular fluid proved to be the most common sources. Compared with TC group, the PC group showed a lower rate of No-available embryos (21.4% vs 81.0%) and a higher rate of blastocyst formation (41.2% vs 28.6%), In addition, the clinical pregnancy rate of PC group was higher than that of TC group in both fresh and frozen-thawed embryo transfer cycles (31.3% vs 16.7%, 38.5% vs 0.0%). Limitations, reasons for caution Further study is still necessary to better understand the sources that induce microbial contamination embryos, and more efficient methods are required to remove the microbes on these contaminated embryos so as better develop and manage a sterile micro-environment for successful embryo growth. Wider implications of the findings: The differential embryonic microbe types associated to different IVF culture and clinical outcomes in patients undergoing IVF-ET might have profound implications for understanding the microbial sources and making a better management of IVF culture system. Trial registration number Not applicable


2018 ◽  
Vol 110 (4) ◽  
pp. e217
Author(s):  
J. Lee ◽  
J. Cha ◽  
S. Shin ◽  
Y. Kim ◽  
S. Lee ◽  
...  

2019 ◽  
Vol 112 (3) ◽  
pp. e128-e129
Author(s):  
Makiko Kawakami ◽  
Tadashi Okimura ◽  
Kazuo Uchiyama ◽  
Akiko Yabuuchi ◽  
Tamotsu Kobayashi ◽  
...  

2012 ◽  
Vol 29 (5) ◽  
pp. 423-428 ◽  
Author(s):  
Sang Min Kang ◽  
Sang Won Lee ◽  
Hak Jun Jeong ◽  
San Hyun Yoon ◽  
Min Whan Koh ◽  
...  

2020 ◽  
Vol 47 (4) ◽  
pp. 284-292
Author(s):  
Hee-Jun Chi ◽  
Jun-Sang Park ◽  
Chang-Seok Yoo ◽  
Su-Jin Kwak ◽  
Ho-Jeong Son ◽  
...  

Objective: This study investigated whether adding outer-well medium to inhibit osmotic changes in culture media in a dry-type incubator improved the clinical outcomes of in vitro fertilization-embryo transfer (IVF-ET) cycles. Methods: In culture dishes, the osmotic changes in media (20 µL)-covered oil with or without outer-well medium (humid or dry culture conditions, respectively) were compared after 3 days of incubation in a dry-type incubator. One-step (Origio) and G1/G2 (Vitrolife) media were used. Results: The osmotic changes in the dry culture condition (308 mOsm) were higher than in the humid culture conditions (285–290 mOsm) after 3 days of incubation. In day 3 IVF-ET cycles, although the pregnancy rate did not significantly differ between the dry (46.2%) and humid culture (52.2%) groups, the rates of abortion and ongoing pregnancy were significantly better in the humid culture group (2.3% and 50.2%, respectively) than in the dry culture group (8.3% and 37.8%, respectively, p<0.05). In day 5 IVF-ET cycles, the abortion rate was significantly lower in the humid culture group (2.2%) than in the dry culture group (25.0%, p<0.01), but no statistically significant difference was observed in the rates of clinical and ongoing pregnancy between the dry (50% and 25.0%, respectively) and humid culture groups (59.5% and 57.3%, respectively) because of the small number of cycles. Conclusion: Hyperosmotic changes in media occurred in a dry-type incubator by evaporation, although the medium was covered with oil. These osmotic changes were efficiently inhibited by supplementation of outer-well medium, which resulted in improved pregnancy outcomes.


Sign in / Sign up

Export Citation Format

Share Document