Follicular fluid enhances sperm motility and velocity in vitro**Supported by the Swiss National Foundation for Scientific Research grant 3.939-0.87.

1991 ◽  
Vol 55 (3) ◽  
pp. 619-623 ◽  
Author(s):  
Leonarda Falcone ◽  
Soldati Gianni ◽  
Ana Piffaretti-Yanez ◽  
Maurizio Marchini ◽  
Urs Eppenberger ◽  
...  
2012 ◽  
Vol 24 (1) ◽  
pp. 193 ◽  
Author(s):  
A. Lange-Consiglio ◽  
F. Cremonesi

In vitro fertilization has remained elusive in the horse, as evidenced by low sperm penetration rates when IVF has been attempted with in vivo- or in vitro-matured oocytes. It is likely that the low sperm penetration rates observed in IVF studies are due to the inability to appropriately capacitate or hyperactivate, or both, stallion sperm in the laboratory. The acquisition of hyperactivated sperm motility has been observed within the oviducts of mammals at the time of fertilization and is required for zona pellucida penetration in conjunction with the acrosome reaction (AR). Although the zona pellucida is considered the prime physiological inducer of AR, previous studies have shown a low incidence of AR in zona pellucida-bound stallion spermatozoa after 1 h of in vitro binding. This low incidence suggests that, besides the zona pellucida glycoproteins, another major factor might be responsible for AR. Protein-bound progesterone, present in equine follicular fluid (FF), has been demonstrated to induce AR in stallion spermatozoa. In this context, the aims of this study were (1) to hyperactivate stallion sperm in FF and (2) to verify whether this hyperactivation supports equine IVF. Pooled FF, aspirated from the preovulatory follicles of oestrous mares, was used and its progesterone concentration was determined by immune enzymatic assay. Spermatozoa from fertile stallions selected by a swim-up procedure were pre-incubated for 6 h in capacitating medium (modifed Whittens's medium (WM) supplemented with 25 mM NaHCO3 and 7 mg mL–1 of BSA) and then incubated for 6 h at 37°C in either FF or capacitating WM. Sperm motility was assayed by computer-assisted semen analysis, rates of AR were assessed by fluorescein isothiocyanate-PNA staining and rate of apoptosis was assessed by an annexin V test. For IVF, spermatozoa were incubated at 10 × 106 sperm mL–1 in capacitating WM for 6 h and then diluted to 1 × 106 sperm mL–1 in capacitating WM with or without 10% of FF. Five mature mare oocytes were transferred into droplets (100 μL) of the sperm suspensions covered with mineral oil and then incubated for 18 h at 38.5°C in 5% CO2 in humidified air. After that, oocytes were transferred to an embryo culture medium (DMEM/F-12) for an additional 3 days. Data were analysed by ANOVA. Treatment of sperm with FF resulted in a significant (P ≤ 0.05) decrease of 3 motility variables indicative of hyperactivation: straight line velocity, straightness and linearity. The highest rate of AR (29.44%) and a lower rate of apoptosis (16.93%) were obtained after 4 h of incubation in follicular fluid. By coupling capacitating conditions with the induction of hyperactivation using follicular fluid, we have obtained reproducible percentages of 8-cell-stage embryos (18.56%) in our IVF experiments. Conversely, sperm incubated in capacitating conditions but not treated with FF did not fertilize (0%). It is concluded that mare FF does not impair sperm viability, stimulates equine sperm hyperactivation in vitro, induces the AR and supports equine IVF.


1972 ◽  
Vol 14 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Anil B. Mukherjee ◽  
Jack Lippes

Human follicular and tubal fluids, as well as mixtures of the two, were tested on the acrosome staining reaction of human, rat and mouse spermatozoa. In all three species, heat-inactivated follicular fluid (56 °C for 30 min) enhanced sperm motility, whereas non-inactivated fluid immobilized the sperm. Spermatozoa obtained from the epididymis of rats and mice, and that derived from human ejaculates had striking acrosome staining reaction (acrosome-blue; nucleus-red), whereas, after treatment with human follicular or tubal fluids, the acrosome staining reaction was lost. In the mouse, a correlation was found between the loss of acrosome staining reaction and the rate of in vitro fertilization and subsequent development of blastocysts. These data suggest that (a) factor(s) for sperm capacitation are present in human follicular and tubal fluids, (b) heat inactivation eliminates toxicity of follicular fluid and (c) the capacitation factor does not appear to be species specific.


Zygote ◽  
1999 ◽  
Vol 7 (3) ◽  
pp. 195-201 ◽  
Author(s):  
J.L. Stephenson ◽  
B.G. Brackett

The effects of zinc (as ZnCl2) on in vitro production of bovine embryos (IVMFC) and components of the procedure, that is in vitro oocyte maturation (IVM), fertilisation (IVF) and embryo development in culture (IVC), and the effect of added zinc on sperm motility were studied. Immature cumulus oocyte complexes (COCs) were aspirated from ovarian follicles (2-5 mm diameter) at slaughter, and matured, fertilised and cultured in chemically defined conditions. The presence of zinc (10, 100 or 1000 μg added per millilitre) throughout IVMFC inhibited fertilisation. After addition of 10 μg zinc per millilitre separately to media for IVM and IVF, fertilisation was inhibited only when zinc was present for IVM. When present for IVF, 80% of oocytes selected for IVM reached 2- to 4-cell stages by 46 h after insemination whereas 67% of control oocytes (inseminated without added zinc) cleaved. Higher zinc concentrations (100 and 1000 μg added per millilitre) for IVF inhibited fertilisation. Sperm motility was reduced with addition of 10 μg per millilitre of zinc for sperm preparation (i.e. capacitation interval). Addition of 1.0 μg zinc per millilitre to media used through IVMFC, or to the IVC medium alone, resulted in inhibition of development after 2- to 4-cell stages. When added to IVM or to both IVM and IVF media 1.0 μg/ml of zinc compromised development to the morula stage and beyond. Maturing bovine oocytes may be more sensitive to 1.0 μg ml of zinc in vitro than in vivo because a concentration of 3.0 μg/ml has been reported for bovine follicular fluid. Fertilisation was not adversely affected by 10 μg/ml of zinc; however, higher concentrations were inhibitory.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S643-S643
Author(s):  
Andrew J Fratoni ◽  
David P Nicolau ◽  
Joseph L Kuti

Abstract Background Antibiotic treatment options for serious STM infections are limited. MIN displays in vitro activity against STM; however, limited data supports optimal dosing for STM. Herein, we employed the murine neutropenic thigh infection model to assess MIN PD against STM. Methods Four clinical STM isolates with MIN MICs 0.25 – 1 mg/L were included. Both thighs of neutropenic ICR mice were inoculated with bacterial suspensions of 107 colony forming units (CFU)/mL. Mice received uranyl nitrate on Day -3 to provide predictable renal impairment. Two hours after inoculation, MIN or control was administered subcutaneously. Pharmacokinetic (PK) studies of 2.5, 25, 50, and 100 mg/kg were conducted. Previously reported protein binding of 78.1% was used to define free exposure. Dose ranging studies were conducted on all STM to assess in vivo activity over a range of MIN exposures. MIN total daily doses (TDD) of 10, 20, and 50 mg/kg were fractionated q24h, q12h, and q6h against a single STM to determine the PD index best correlated with reductions in CFU/mL. Efficacy was measured in log10CFU/thigh at 24h compared with 0h controls. Composite CFU data were fitted to an Emax model to determine the fAUC/MIC exposure for stasis and 1 log10 reduction. Results MIN PK was linear up to 50 mg/kg and well described by a 1 compartment model with first order absorption and elimination. Mean PK parameters across the linear range were: Vd, 2.97 L/kg; K01, 10.62 1/h; and K10, 0.35 1/h. Mean ± SD bacterial burden at 0h across all isolates was 6.17±0.20 log10CFU/thigh. In 24h controls, bacterial growth was 7.90±0.85 log10CFU/thigh. A dose response was observed across all isolates using TDD of 2-300 mg/kg. PD indices correlated with CFU reductions as follows: fAUC/MIC (R2=0.613), fCmax/MIC (R2=0.590), and %fT >MIC (R2=0.504). The fAUC/MIC needed for stasis and 1 log10 reduction at 24h was 9.6 and 23.6, respectively. Conclusion These are the first data describing MIN PD against STM. Against these STM, MIN fAUC/MIC was the PD index best correlated with CFU reductions. The exposure thresholds defined in this study will be useful in designing optimal MIN dosing regimens for treating STM infections and re-assessment of the current susceptibility breakpoint. The study was funded under FDA Contract 75F40120C00171. Disclosures David P. Nicolau, PharmD, Abbvie, Cepheid, Merck, Paratek, Pfizer, Wockhardt, Shionogi, Tetraphase (Other Financial or Material Support, I have been a consultant, speakers bureau member, or have received research funding from the above listed companies.) Joseph L. Kuti, PharmD, Allergan (Speaker’s Bureau)BioMérieux (Consultant, Research Grant or Support, Speaker’s Bureau)Contrafect (Scientific Research Study Investigator)GSK (Consultant)Merck (Research Grant or Support)Paratek (Speaker’s Bureau)Roche Diagnostics (Research Grant or Support)Shionogi (Research Grant or Support)Summit (Scientific Research Study Investigator)


Sign in / Sign up

Export Citation Format

Share Document