1104. Tissue reactions following solid implants

1966 ◽  
Vol 4 ◽  
pp. 543-544
2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
B Hughes ◽  
J Stallard ◽  
S Jivan

Abstract Introduction Surgical drains are used by many specialities, we aim to determine the most robust method of securing them by comparing suturing technique, material and fixation angle. Method A Blake’s drain was inserted into a piece of pork belly and secured using a standard ‘three half hitch’ technique with 3.0 Silk, EthilonTM and ProleneTM . For each suture type, drains were sutured in line, at 45 and 90 degrees to the course of the drain. The force needed for the suture to failure was measured and each repeated 3 times. Different suture techniques were then used to determine the strongest fixation. Results With the drain exiting inline the moment of failure was, on average, 1.25kg for silk, 3.5kg for EthilonTM and 4.0kg for ProleneTM. Increasing drain fixation angle required more force for the suture to fail. With EthilonTM and ProleneTM, the suture snapped before the drain slipped. Three half hitches was the strongest technique. Conclusions Suture material, technique and drain fixation angle had an impact on suture strength with ProleneTM outperforming Silk. We advocate using a ‘three half hitch’ technique with 3.0 ProleneTM to secure a surgical drain. It offers superior strength whilst reducing the risk of localised tissue reactions.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3048
Author(s):  
Rok Podlipec ◽  
Esther Punzón-Quijorna ◽  
Luka Pirker ◽  
Mitja Kelemen ◽  
Primož Vavpetič ◽  
...  

The metallic-associated adverse local tissue reactions (ALTR) and events accompanying worn-broken implant materials are still poorly understood on the subcellular and molecular level. Current immunohistochemical techniques lack spatial resolution and chemical sensitivity to investigate causal relations between material and biological response on submicron and even nanoscale. In our study, new insights of titanium alloy debris-tissue interaction were revealed by the implementation of label-free high-resolution correlative microscopy approaches. We have successfully characterized its chemical and biological impact on the periprosthetic tissue obtained at revision surgery of a fractured titanium-alloy modular neck of a patient with hip osteoarthritis. We applied a combination of photon, electron and ion beam micro-spectroscopy techniques, including hybrid optical fluorescence and reflectance micro-spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), helium ion microscopy (HIM) and micro-particle-induced X-ray emission (micro-PIXE). Micron-sized wear debris were found as the main cause of the tissue oxidative stress exhibited through lipopigments accumulation in the nearby lysosome. This may explain the indications of chronic inflammation from prior histologic examination. Furthermore, insights on extensive fretting and corrosion of the debris on nm scale and a quantitative measure of significant Al and V release into the tissue together with hydroxyapatite-like layer formation particularly bound to the regions with the highest Al content were revealed. The functional and structural information obtained at molecular and subcellular level contributes to a better understanding of the macroscopic inflammatory processes observed in the tissue level. The established label-free correlative microscopy approach can efficiently be adopted to study any other clinical cases related to ALTR.


Author(s):  
Chengyuan Wu ◽  
Ashwini D. Sharan ◽  
Michael Kogan ◽  
Robert H. Rosenwasser ◽  
John Donoghue ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4818
Author(s):  
Annica Pröhl ◽  
Milijana Batinic ◽  
Said Alkildani ◽  
Michael Hahn ◽  
Milena Radenkovic ◽  
...  

The present in vivo study analyses both the inflammatory tissue reactions and the bone healing capacity of a newly developed bone substitute material (BSM) based on xenogeneic bone substitute granules combined with hyaluronate (HY) as a water-binding molecule. The results of the hyaluronate containing bone substitute material (BSM) were compared to a control xenogeneic BSM of the same chemical composition and a sham operation group up to 16 weeks post implantationem. A major focus of the study was to analyze the residual hyaluronate and its effects on the material-dependent healing behavior and the inflammatory tissue responses. The study included 63 male Wistar rats using the calvaria implantation model for 2, 8, and 16 weeks post implantationem. Established and Good Laboratory Practice (GLP)-conforming histological, histopathological, and histomorphometrical analysis methods were conducted. The results showed that the new hyaluronate containing BSM was gradually integrated within newly formed bone up to the end of the study that ended in a condition of complete bone defect healing. Thereby, no differences to the healing capacity of the control BSM were found. However, the bone formation in both groups was continuously significantly higher compared to the sham operation group. Additionally, no differences in the (inflammatory) tissue response that was analyzed via qualitative and (semi-) quantitative methods were found. Interestingly, no differences were found between the numbers of pro- and anti-inflammatory macrophages between the three study groups over the entire course of the study. No signs of the HY as a water-binding part of the BSM were histologically detectable at any of the study time points, altogether the results of the present study show that HY allows for an optimal material-associated bone tissue healing comparable to the control xenogeneic BSM. The added HY seems to be degraded within a very short time period of less than 2 weeks so that the remaining BSM granules allow for a gradual osteoconductive bone regeneration. Additionally, no differences between the inflammatory tissue reactions in both material groups and the sham operation group were found. Thus, the new hyaluronate containing xenogeneic BSM and also the control BSM have been shown to be fully biocompatible without any differences regarding bone regeneration.


2021 ◽  
Vol 3 ◽  
pp. 100068
Author(s):  
Panita Maturavongsadit ◽  
Gayane Paravyan ◽  
Martina Kovarova ◽  
J. Victor Garcia ◽  
S. Rahima Benhabbour

2002 ◽  
Vol 43 (12) ◽  
pp. 3065-3071 ◽  
Author(s):  
Yoshiaki Ikarashi ◽  
Toshie Tsuchiya ◽  
Kazuhiro Toyoda ◽  
Equo Kobayashi ◽  
Hisashi Doi ◽  
...  

2004 ◽  
Vol 72 (12) ◽  
pp. 6780-6789 ◽  
Author(s):  
Yvonne Schmid ◽  
Guntram A. Grassl ◽  
Oliver T. Bühler ◽  
Mikael Skurnik ◽  
Ingo B. Autenrieth ◽  
...  

ABSTRACT The major invasive factor of Yersinia enterocolitica, the invasin (Inv) protein, induces proinflammatory host cell responses, including interleukin-8 (IL-8) secretion from human epithelial cells, by engagement of β1 integrins. The Inv-triggered β1 integrin signaling involves the small GTPase Rac; the activation of MAP kinases, such as p38, MEK1, and JNK; and the activation of the transcription factor NF-κB. In the present study, we demonstrate that Y. enterocolitica YadA, which is a major adhesin of Y. enterocolitica with pleiotropic virulence effects, induces IL-8 secretion in epithelial cells. The abilites of YadA and Inv to promote adhesion to and invasion of HeLa cells and to induce IL-8 production by the cells were investigated by expression of YadA and Inv in Escherichia coli. While YadA mediates efficacious adhesion to HeLa cells, it mediates marginal invasion compared with Inv. Both YadA and Inv trigger comparable levels of IL-8 production. Conformational changes of the YadA head domain by mutation of NSVAIG-S motifs, which abolish collagen binding, also abolish adhesion of Yersinia to HeLa cells and YadA-mediated IL-8 secretion. Furthermore, experiments in which blocking antibodies against β1 integrins were used demonstrate that β1 integrins are crucial for YadA-mediated IL-8 secretion. Inhibitor studies demonstrate the involvement of small GTPases and MAP kinases, such as p38, MEK1, and JNK, indicating that β1 integrin-dependent signaling mediated by Inv or YadA involves similar signaling pathways. These data present YadA, in addition to Inv, YopB, and Yersinia lipopolysaccharide, as a further inducer of proinflammatory molecules by which Y. enterocolitica might promote inflammatory tissue reactions.


Sign in / Sign up

Export Citation Format

Share Document