New sufficient conditions for the stability of continuous and discrete time-delay interval systems

1997 ◽  
Vol 334 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Chien-Hua Lee ◽  
Tsung-Lieh Hsien
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kaushik Dehingia ◽  
Hemanta Kumar Sarmah ◽  
Yamen Alharbi ◽  
Kamyar Hosseini

AbstractIn this study, we discuss a cancer model considering discrete time-delay in tumor-immune interaction and stimulation processes. This study aims to analyze and observe the dynamics of the model along with variation of vital parameters and the delay effect on anti-tumor immune responses. We obtain sufficient conditions for the existence of equilibrium points and their stability. Existence of Hopf bifurcation at co-axial equilibrium is investigated. The stability of bifurcating periodic solutions is discussed, and the time length for which the solutions preserve the stability is estimated. Furthermore, we have derived the conditions for the direction of bifurcating periodic solutions. Theoretically, it was observed that the system undergoes different states if we vary the system’s parameters. Some numerical simulations are presented to verify the obtained mathematical results.


2010 ◽  
Vol 15 (4) ◽  
pp. 473-491 ◽  
Author(s):  
A. K. Pal ◽  
G. P. Samanta

The present paper deals with the problem of a predator-prey model incorporating a prey refuge with disease in the prey-population. We assume the predator population will prefer only infected population for their diet as those are more vulnerable. Dynamical behaviours such as boundedness, permanence, local and global stabilities are addressed. We have also studied the effect of discrete time delay on the model. The length of delay preserving the stability is also estimated. Computer simulations are carried out to illustrate our analytical findings.


Author(s):  
Suresh B. Reddy

Abstract Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers are among the most common schemes for control since their formulation nearly a century ago. They have been very successful in many applications, even as we have migrated from analog implementations to digital control systems. While there is rich literature for design and analysis of PI/PID controllers for linear time-invariant systems with modeled dynamics, the tools for analysis and design for nonlinear systems with unknown dynamics are limited, despite their known effectiveness. This paper extends previous observations about a form of discrete Time Delay Control’s equivalence to a generalized PI controller for more general canonical systems, with additional complimentary feedback linearization of known dynamics, as desired. In addition, sufficient conditions for Bounded Input-Bounded Output (BIBO) as well as exponential stability are developed in this paper for the form of discrete TDC that is closest to generalized discrete PI equivalent controller, for multi-input multi-output nonlinear systems, including nonaffine cases. Accordingly, design procedures are suggested for such discrete TDC, and generalized discrete PI controller for nonlinear systems.


2006 ◽  
Vol 2006 ◽  
pp. 1-10 ◽  
Author(s):  
El-Kébir Boukas

This paper deals with the class of linear discrete-time systems with varying time delay. The problems of stability and stabilizability for this class of systems are considered. Given an upper bound and a lower bound on the time-varying delay, sufficient conditions for checking the stability of this class of systems are developed. A control design algorithm is also provided. All the results developed in this paper are in the LMI formalism which makes their solvability easier using existing tools. A numerical example is provided to show the effectiveness of the established results.


2006 ◽  
Vol 60 (3-4) ◽  
pp. 78-81
Author(s):  
Sreten Stojanovic ◽  
Dragutin Debeljkovic ◽  
Ilija Mladenovic

New conditions for the stability of discrete delay systems of the form x (k+1) = Arjx (k) + Aix (k-h) are presented in the paper. These new delay-independent conditions were derived using an approach based on the second Lyapunov's method. These results are less conservative than some in the existing literature. A numerical example was worked out to show the applicability of the derived results.


Volume 1 ◽  
2004 ◽  
Author(s):  
S. B. Stojanovic ◽  
D. Lj. Debeljkovic

This paper extends some of the basic results in the area of Lyapunov (asymptotic) to linear, discrete, time invariant time-delay systems. These results are given in the form of only sufficient conditions and represent other generalisation of some previous ones or completely new results. In the latter case it is easy to show that, in the most cases, these results are less conservative then those in existing literature. A numerical example has been working out to show the applicability of results derived. To the best knowledge of the authors, such results have not yet been reported.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Xueyong Zhou ◽  
Xiangyun Shi

A discrete-time-delay differential mathematical model that described HIV infection of CD4+T cells with drugs therapy is analyzed. The stability of the two equilibria and the existence of Hopf bifurcation at the positive equilibrium are investigated. Using the normal form theory and center manifold argument, the explicit formulas which determine the stability, the direction, and the period of bifurcating periodic solutions are derived. Numerical simulations are carried out to explain the mathematical conclusions.


Sign in / Sign up

Export Citation Format

Share Document