Helicobacter pylori impairs DNA mismacth repair in gastric epithelial cells: A link with gastric carcinogenesis

2000 ◽  
Vol 118 (4) ◽  
pp. A867 ◽  
Author(s):  
Jae J. Kim ◽  
Wai K. Leung ◽  
Ling Wu ◽  
David Y. Graham ◽  
Antonia R. Sepulveda
2019 ◽  
Vol 17 (1) ◽  
pp. 50-63 ◽  
Author(s):  
Atsushi Takahashi-Kanemitsu ◽  
Christopher T. Knight ◽  
Masanori Hatakeyama

AbstractChronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4281
Author(s):  
Suhn Hyung Kim ◽  
Hyeyoung Kim

Helicobacter pylori (H. pylori) infection promotes gastric carcinogenesis by increasing oxidative stress, inflammation, and dysregulation of cell survival and proliferation of gastric epithelial cells. Astaxanthin (ASTX), a bioactive carotenoid, exhibits antioxidant and anticancer effects by modulating aberrant signaling pathways that lead to dysregulation of cell death and proliferation. To elucidate the molecular mechanism of H. pylori-induced gastric carcinogenesis and to examine the inhibitory effect of ASTX on H. pylori-induced gastric epithelial cell gene expression changes, we performed comparative RNA-sequencing (RNA-Seq) analysis for H. pylori-infected gastric epithelial cells treated with or without ASTX. RNA-Seq results reveal that differentially expressed genes (DEGs) in H. pylori-infected cells were mainly associated with the Wnt/β-catenin signaling pathway, which is related to cell proliferation. ASTX significantly reversed H. pylori-induced transcriptional alterations of the key mediators involved in β-catenin signaling, notably, porcupine (gene symbol, PORCN), spermine oxidase (SMOX), bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI), SMAD family member 4 (SMAD4), transforming growth factor-β1 (TGFB1), Fos-like 1 (FOSLI), and c-myc (MYC). We suggest that ASTX may be a potential therapeutic agent that can suppress H. pylori-induced proliferation-associated gene expression changes, in part, by counter-regulating the Wnt/β-catenin signaling pathway.


2009 ◽  
Vol 2009 (6) ◽  
pp. 722-728
Author(s):  
Can-Xia XU ◽  
Yan JIA ◽  
Wen-Bin YANG ◽  
Hui-Fang ZOU ◽  
Fen WANG ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-448
Author(s):  
Kai Syin Lee ◽  
Anastasia Kalantzis ◽  
Naoko Murata-Kamiya ◽  
Masanori Hatakeyama ◽  
Andrew S. Giraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document