scholarly journals Inhibitory Effect of Astaxanthin on Gene Expression Changes in Helicobacter pylori-Infected Human Gastric Epithelial Cells

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4281
Author(s):  
Suhn Hyung Kim ◽  
Hyeyoung Kim

Helicobacter pylori (H. pylori) infection promotes gastric carcinogenesis by increasing oxidative stress, inflammation, and dysregulation of cell survival and proliferation of gastric epithelial cells. Astaxanthin (ASTX), a bioactive carotenoid, exhibits antioxidant and anticancer effects by modulating aberrant signaling pathways that lead to dysregulation of cell death and proliferation. To elucidate the molecular mechanism of H. pylori-induced gastric carcinogenesis and to examine the inhibitory effect of ASTX on H. pylori-induced gastric epithelial cell gene expression changes, we performed comparative RNA-sequencing (RNA-Seq) analysis for H. pylori-infected gastric epithelial cells treated with or without ASTX. RNA-Seq results reveal that differentially expressed genes (DEGs) in H. pylori-infected cells were mainly associated with the Wnt/β-catenin signaling pathway, which is related to cell proliferation. ASTX significantly reversed H. pylori-induced transcriptional alterations of the key mediators involved in β-catenin signaling, notably, porcupine (gene symbol, PORCN), spermine oxidase (SMOX), bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI), SMAD family member 4 (SMAD4), transforming growth factor-β1 (TGFB1), Fos-like 1 (FOSLI), and c-myc (MYC). We suggest that ASTX may be a potential therapeutic agent that can suppress H. pylori-induced proliferation-associated gene expression changes, in part, by counter-regulating the Wnt/β-catenin signaling pathway.

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 637 ◽  
Author(s):  
Yongchae Park ◽  
Hanbit Lee ◽  
Joo Weon Lim ◽  
Hyeyoung Kim

Helicobacter pylori infection causes the hyper-proliferation of gastric epithelial cells that leads to the development of gastric cancer. Overexpression of tumor necrosis factor receptor associated factor (TRAF) is shown in gastric cancer cells. The dietary antioxidant β-carotene has been shown to counter hyper-proliferation in H. pylori-infected gastric epithelial cells. The present study was carried out to examine the β-carotene mechanism of action. We first showed that H. pylori infection decreases cellular IκBα levels while increasing cell viability, NADPH oxidase activity, reactive oxygen species production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and TRAF1 and TRAF2 gene expression, as well as protein–protein interaction in gastric epithelial AGS cells. We then demonstrated that pretreatment of cells with β-carotene significantly attenuates these effects. Our findings support the proposal that β-carotene has anti-cancer activity by reducing NADPH oxidase-mediated production of ROS, NF-κB activation and NF-κB-regulated TRAF1 and TRAF2 gene expression, and hyper-proliferation in AGS cells. We suggest that the consumption of β-carotene-enriched foods could decrease the incidence of H. pylori-associated gastric disorders.


2013 ◽  
Vol 81 (7) ◽  
pp. 2468-2477 ◽  
Author(s):  
Alexander Sheh ◽  
Rupesh Chaturvedi ◽  
D. Scott Merrell ◽  
Pelayo Correa ◽  
Keith T. Wilson ◽  
...  

ABSTRACTWhileHelicobacter pyloriinfects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors inH. pyloripathogenesis, global gene expression of sixH. pyloriisolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factorscagA,vacA, andbabBand were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin ofH. pyloristrains may promote increased gastric disease.


2003 ◽  
Vol 285 (6) ◽  
pp. G1171-G1180 ◽  
Author(s):  
Jung Mogg Kim ◽  
Joo Sung Kim ◽  
Hyun Chae Jung ◽  
Yu-Kyoung Oh ◽  
Hee-Young Chung ◽  
...  

Helicobacter pylori infection induces apoptosis and inducible nitric oxide synthase (iNOS) expression in gastric epithelial cells. In this study, we investigated the effects of NF-κB activation and iNOS expression on apoptosis in H. pylori-infected gastric epithelial cells. The suppression of NF-κB significantly increased caspase-3 activity and apoptosis in H. pylori-infected MKN-45 and Hs746T gastric epithelial cell lines as well as primary gastric epithelial cells. An NF-κB signaling pathway via NF-κB-inducing kinase and IκB kinase-β activation was found to be involved in the inhibition of apoptosis in H. pylori-infected gastric epithelial cells. In gastric epithelial cells transfected with retrovirus containing IκBα superrepressor, iNOS mRNA and protein levels were reduced, indicating that H. pylori infection induced the expression of iNOS by activating NF-κB. Moreover, a NO donor, S-nitroso- N-acetylpenicillamine (100 μM), decreased caspase-3 activity and apoptosis in NF-κB-suppressed cells infected with H. pylori. These results suggest that NF-κB activation may play a role in protecting gastric epithelial cells from H. pylori-induced apoptosis by upregulating endogenous iNOS.


2001 ◽  
Vol 69 (11) ◽  
pp. 6970-6980 ◽  
Author(s):  
Joanne M. Cox ◽  
Christopher L. Clayton ◽  
Toshihiko Tomita ◽  
Don M. Wallace ◽  
Philip A. Robinson ◽  
...  

ABSTRACT Helicobacter pylori strains containing thecag pathogenicity island (PAI) induce NF-κB activation and interleukin-8 secretion in gastric epithelial cells. The aim of this study was to investigate changes in epithelial gene expression induced by cag PAI-positive and -negative strains ofH. pylori using high-density cDNA array hybridization technology. Radio-labeled cDNA prepared from H. pylori-infected Kato 3 gastric epithelial cells was hybridized to high-density cDNA arrays to identify changes in epithelial gene expression compared to noninfected controls. In vivo expression of selected, differentially expressed genes was examined by reverse transcription-PCR analysis of H. pylori-positive and -negative gastric mucosa. Screening of ca. 57,800 cDNAs identified 208 known genes and 48 novel genes and/or expressed sequence tags of unknown function to be differentially expressed in Kato 3 cells following H. pylori infection. Marked differences in gene expression profiles were observed following cagPAI-positive and cag PAI-negative infection with 15 novel cDNAs and 92 known genes being differentially expressed. H. pylori was found to change the expression of genes encoding growth factors and cytokine/chemokines and their receptors, apoptosis proteins, transcription factors and metalloprotease-disintegrin proteins (ADAMs), and tissue inhibitors of metalloproteinases. Gastric differential expression of selected known genes (amphiregulin and ADAM 10) and a novel gene (HPYR1) was confirmed in vivo in patients with H. pylori infection. Confirmation of the in vivo expression of selected genes demonstrates the usefulness of this approach for investigating pathogen-induced changes in host gene expression.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liping Tao ◽  
Hai Zou ◽  
Zhimin Huang

Infection ofHelicobacter pylori (H. pylori)changed the proliferation of gastric epithelial cells and decreased the expression of heat shock protein 70 (HSP70). However, the effects ofH. pylorion the proliferation of gastric epithelial cells and the roles of HSP70 during the progress need further investigation.Objective.To investigate the effects ofHelicobacter pylori (H. pylori)and heat shock protein 70 (HSP70) on the proliferation of human gastric epithelial cells.Methods. H. pyloriand a human gastric epithelial cell line (AGS) were cocultured. The proliferation of AGS cells was quantitated by an MTT assay, and the expression of HSP70 in AGS cells was detected by Western blotting. HSP70 expression in AGS cells was silenced by small interfering RNA (siRNA) to investigate the role of HSP70. ThesiRNA-treated AGS cells were cocultured withH. pyloriand cell proliferation was measured by an MTT assay.Results.The proliferation of AGS cells was accelerated by coculturing withH. pylorifor 4 and 8 h, but was suppressed at 24 and 48 h. HSP70 expression was decreased in AGS cells infected byH. pylorifor 48 h. The proliferation in HSP70-silenced AGS cells was inhibited after coculturing withH. pylorifor 24 and 48 h compared with the control group.Conclusions.Coculture ofH. pylorialtered the proliferation of gastric epithelial cells and decreased HSP70 expression. HSP70 knockdown supplemented the inhibitory effect ofH. pylorion proliferation of epithelial cells. These results indicate that the effects ofH. pylorion the proliferation of gastric epithelial cells at least partially depend on the decreased expression of HSP70 induced by the bacterium.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Alevtina Gall ◽  
Ryan G. Gaudet ◽  
Scott D. Gray-Owen ◽  
Nina R. Salama

ABSTRACT Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, causing inflammation which, in some cases, leads to gastric ulcers and cancer. The clinical outcome of infection depends on a complex interplay of bacterial, host genetic, and environmental factors. Although H. pylori is recognized by both the innate and adaptive immune systems, this rarely results in bacterial clearance. Gastric epithelial cells are the first line of defense against H. pylori and alert the immune system to bacterial presence. Cytosolic delivery of proinflammatory bacterial factors through the cag type 4 secretion system ( cag -T4SS) has long been appreciated as the major mechanism by which gastric epithelial cells detect H. pylori . Classically attributed to the peptidoglycan sensor NOD1, recent work has highlighted the role of NOD1-independent pathways in detecting H. pylori ; however, the bacterial and host factors involved have remained unknown. Here, we show that bacterially derived heptose-1,7-bisphosphate (HBP), a metabolic precursor in lipopolysaccharide (LPS) biosynthesis, is delivered to the host cytosol through the cag -T4SS, where it activates the host tumor necrosis factor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA)-dependent cytosolic surveillance pathway. This response, which is independent of NOD1, drives robust NF-κB-dependent inflammation within hours of infection and precedes NOD1 activation. We also found that the CagA toxin contributes to the NF-κB-driven response subsequent to TIFA and NOD1 activation. Taken together, our results indicate that the sequential activation of TIFA, NOD1, and CagA delivery drives the initial inflammatory response in gastric epithelial cells, orchestrating the subsequent recruitment of immune cells and leading to chronic gastritis. IMPORTANCE H. pylori is a globally prevalent cause of gastric and duodenal ulcers and cancer. H. pylori antibiotic resistance is rapidly increasing, and a vaccine remains elusive. The earliest immune response to H. pylori is initiated by gastric epithelial cells and sets the stage for the subsequent immunopathogenesis. This study revealed that host TIFA and H. pylori -derived HBP are critical effectors of innate immune signaling that account for much of the inflammatory response to H. pylori in gastric epithelial cells. HBP is delivered to the host cell via the cag -T4SS at a time point that precedes activation of the previously described NOD1 and CagA inflammatory pathways. Manipulation of the TIFA-driven immune response in the host and/or targeting of ADP-heptose biosynthesis enzymes in H. pylori may therefore provide novel strategies that may be therapeutically harnessed to achieve bacterial clearance.


2000 ◽  
Vol 118 (4) ◽  
pp. A867 ◽  
Author(s):  
Jae J. Kim ◽  
Wai K. Leung ◽  
Ling Wu ◽  
David Y. Graham ◽  
Antonia R. Sepulveda

1999 ◽  
Vol 67 (8) ◽  
pp. 4237-4242 ◽  
Author(s):  
Nicola L. Jones ◽  
Andrew S. Day ◽  
Hilary A. Jennings ◽  
Philip M. Sherman

ABSTRACT The mechanisms involved in mediating the enhanced gastric epithelial cell apoptosis observed during infection withHelicobacter pylori in vivo are unknown. To determine whether H. pylori directly induces apoptosis of gastric epithelial cells in vitro and to define the role of the Fas-Fas ligand signal transduction cascade, human gastric epithelial cells were infected with H. pylori for up to 72 h under microaerophilic conditions. As assessed by both transmission electron microscopy and fluorescence microscopy, incubation with acagA-positive, cagE-positive, VacA-positive clinical H. pylori isolate stimulated an increase in apoptosis compared to the apoptosis of untreated AGS cells (16.0% ± 2.8% versus 5.9% ± 1.4%, P < 0.05) after 72 h. In contrast, apoptosis was not detected following infection withcagA-negative, cagE-negative, VacA-negative clinical isolates or a Campylobacter jejuni strain. In addition to stimulating apoptosis, infection with H. pylorienhanced Fas receptor expression in AGS cells to a degree comparable to that of treatment with a positive control, gamma interferon (12.5 ng/ml) (148% ± 24% and 167% ± 24% of control, respectively). The enhanced Fas receptor expression was associated with increased sensitivity to Fas-mediated cell death. Ligation of the Fas receptor with an agonistic monoclonal antibody resulted in an increase in apoptosis compared to the apoptosis of cells infected with the bacterium alone (38.5% ± 7.1% versus 16.0% ± 2.8%,P < 0.05). Incubation with neutralizing anti-Fas antibody did not prevent apoptosis of H. pylori-infected cells. Taken together, these findings demonstrate that the gastric pathogen H. pylori stimulates apoptosis of gastric epithelial cells in vitro in association with the enhanced expression of the Fas receptor. These data indicate a role for Fas-mediated signaling in the programmed cell death that occurs in response toH. pylori infection.


2018 ◽  
Vol 9 (5) ◽  
pp. 829-841 ◽  
Author(s):  
V. Garcia-Castillo ◽  
H. Zelaya ◽  
A. Ilabaca ◽  
M. Espinoza-Monje ◽  
R. Komatsu ◽  
...  

Helicobacter pylori infection is associated with important gastric pathologies. An aggressive proinflammatory immune response is generated in the gastric tissue infected with H. pylori, resulting in gastritis and a series of morphological changes that increase the susceptibility to cancer development. Probiotics could present an alternative solution to prevent or decrease H. pylori infection. Among them, the use of immunomodulatory lactic acid bacteria represents a promising option to reduce the severity of chronic inflammatory-mediated tissue damage and to improve protective immunity against H. pylori. We previously isolated Lactobacillus fermentum UCO-979C from human gastric tissue and demonstrated its capacity to reduce adhesion of H. pylori to human gastric epithelial cells (AGS cells). In this work, the ability of L. fermentum UCO-979C to modulate immune response in AGS cells and PMA phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 (human monocytic leukaemia) macrophages in response to H. pylori infection was evaluated. We demonstrated that the UCO-979C strain is able to differentially modulate the cytokine response of gastric epithelial cells and macrophages after H. pylori infection. Of note, L. fermentum UCO-979C was able to significantly reduce the production of inflammatory cytokines and chemokines in AGS and THP-1 cells as well as increase the levels of immunoregulatory cytokines, indicating a remarkable anti-inflammatory effect. These findings strongly support the probiotic potential of L. fermentum UCO-979C and provide evidence of its beneficial effects against the inflammatory damage induced by H. pylori infection. Although our findings should be proven in appropriate experiments in vivo, in both H. pylori infection animal models and human trials, the results of the present work provide a scientific rationale for the use of L. fermentum UCO-979C to prevent or reduce H. pylori-induced gastric inflammation in humans.


Sign in / Sign up

Export Citation Format

Share Document