Su1427 Gastric Electrical Stimulation of the Antrum Evokes Compound Cervical Vagal Nerve Action Potentials in Rodents

2015 ◽  
Vol 148 (4) ◽  
pp. S-507 ◽  
Author(s):  
Matthew P. Ward ◽  
Thomas V. Nowak ◽  
Pedro P. Irazoqui ◽  
John M. Wo ◽  
Muhammad A. Arafat ◽  
...  
1988 ◽  
Vol 118 (3) ◽  
pp. 471-483 ◽  
Author(s):  
L. M. Voloschin ◽  
E. Décima ◽  
J. H. Tramezzani

ABSTRACT Electrical stimulation of the XIII thoracic nerve (the 'mammary nerve') causes milk ejection and the release of prolactin and other hormones. We have analysed the route of the suckling stimulus at the level of different subgroups of fibres of the teat branch of the XIII thoracic nerve (TBTN), which innervates the nipple and surrounding skin, and assessed the micromorphology of the TBTN in relation to lactation. There were 844 ± 63 and 868 ± 141 (s.e.m.) nerve fibres in the TBTN (85% non-myelinated) in virgin and lactating rats respectively. Non-myelinated fibres were enlarged in lactating rats; the modal value being 0·3–0·4 μm2 for virgin and 0·4–0·5 μm2 for lactating rats (P > 0·001; Kolmogorov–Smirnov test). The modal value for myelinated fibres was 3–6 μm2 in both groups. The compound action potential of the TBTN in response to electrical stimulation showed two early volleys produced by the Aα- and Aδ-subgroups of myelinated fibres (conduction velocity rate of 60 and 14 m/s respectively), and a late third volley originated in non-myelinated fibres ('C') group; conduction velocity rate 1·4 m/s). Before milk ejection the suckling pups caused 'double bursts' of fibre activity in the Aδ fibres of the TBTN. Each 'double burst' consisted of low amplitude action potentials and comprised two multiple discharges (33–37 ms each) separated by a silent period of around 35 ms. The 'double bursts' occurred at a frequency of 3–4/s, were triggered by the stimulation of the nipple and were related to fast cheek movements visible only by watching the pups closely. In contrast, the Aα fibres of the TBTN showed brief bursts of high amplitude potentials before milk ejection. These were triggered by the stimulation of cutaneous receptors during gross slow sucking motions of the pup (jaw movements). Immediately before the triggering of milk ejection the mother was always asleep and a low nerve activity was recorded in the TBTN at this time. When reflex milk ejection occurred, the mother woke and a brisk increase in nerve activity was detected; this decreased when milk ejection was accomplished. In conscious rats the double-burst type of discharges in Aδ fibres was not observed, possibly because this activity cannot be detected by the recording methods currently employed in conscious animals. During milk ejection, action potentials of high amplitude were conveyed in the Aα fibres of the TBTN. During the treading time of the stretch reaction (SR), a brisk increase in activity occurred in larger fibres; during the stretching periods of the SR a burst-type discharge was again observed in slow-conducting afferents; when the pups changed nipple an abrupt increase in activity occurred in larger fibres. In summary, the non-myelinated fibres of the TBTN are increased in diameter during lactation, and the pattern of suckling-evoked nerve activity in myelinated fibres showed that (a) the double burst of Aδ fibres, produced by individual sucks before milk ejection, could be one of the conditions required for the triggering of the reflex, and (b) the nerve activity displayed during milk-ejection action may result, at least in part, from 'non-specific' stimulation of cutaneous receptors. J. Endocr. (1988) 118, 471–483


2005 ◽  
Vol 22 (2) ◽  
pp. 227-243 ◽  
Author(s):  
Tatiana Y. Kostrominova ◽  
Douglas E. Dow ◽  
Robert G. Dennis ◽  
Richard A. Miller ◽  
John A. Faulkner

Loss of innervation in skeletal muscles leads to degeneration, atrophy, and loss of force. These dramatic changes are reflected in modifications of the mRNA expression of a large number of genes. Our goal was to clarify the broad spectrum of molecular events associated with long-term denervation of skeletal muscles. A microarray study compared gene expression profiles of 2-mo denervated and control extensor digitorum longus (EDL) muscles from 6-mo-old rats. The study identified 121 genes with increased and 7 genes with decreased mRNA expression. The expression of 107 of these genes had not been identified previously as changed after denervation. Many of the genes identified were genes that are highly expressed in skeletal muscles during embryonic development, downregulated in adults, and upregulated after denervation of muscle fibers. Electrical stimulation of denervated muscles preserved muscle mass and maximal force at levels similar to those in the control muscles. To understand the processes underlying the effect of electrical stimulation on denervated skeletal muscles, mRNA and protein expression of a number of genes, identified by the microarray study, was compared. The hypothesis was that loss of nerve action potentials and muscle contractions after denervation play the major roles in upregulation of gene expression in skeletal muscles. With electrical stimulation of denervated muscles, the expression levels for these genes were significantly downregulated, consistent with the hypothesis that loss of action potentials and/or contractions contribute to the alterations in gene expression in denervated skeletal muscles.


Spine ◽  
2000 ◽  
Vol 25 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Yuzuru Takahashi ◽  
Jiro Hirayama ◽  
Yoshio Nakajima ◽  
Seiji Ohtori ◽  
Kazuhisa Takahashi

2018 ◽  
Vol 154 (6) ◽  
pp. S-310
Author(s):  
Matthew P. Ward ◽  
Bartek Rajwa ◽  
John M. Wo ◽  
Anita Gupta ◽  
Terry L. Powley ◽  
...  

1983 ◽  
Vol 107 (1) ◽  
pp. 21-47 ◽  
Author(s):  
C.J.H. ELLIOTT

(1) Hairs in the subcostal hair plates of the wings of crickets have a high angular stiffness (5.5μNm rad1) when bent about their base. The mean threshold required to elicit action potentials is 15°. Viscous drag from air movements will not deflect the hairs sufficiently to excite them; this will only occur when the hair is bent by the opposite wing. (2) The hair sensillae project to the ventral association area of the mesothoracic ganglion, but the endings of the stridulatory motor neurones are all in dorsal or lateral neuropiles of the thoracic ganglia. (3) Electrical stimulation of the hair plates evokes reliable EPSPs in opener (M99), closer (M90) and wing folding (M85) motor neurones, after latencies of 4–20 ms, depending on the neurone. Properties of the hairs and motor neurones suggest that these EPSPs in the wing folding muscle (M85) and closer (M90) could play an important role in the control of wing position seen in recent behavioural study.


1986 ◽  
Vol 250 (2) ◽  
pp. E212-E217 ◽  
Author(s):  
B. Ahren ◽  
T. L. Paquette ◽  
G. J. Taborsky

To investigate the effect of vagal nerve stimulation on the release of pancreatic somatostatin, we electrically stimulated (10 Hz, 5 ms, 13.5 mA, and 10 min) the thoracic vagi just below the heart in halothane anesthetized dogs (n = 15). The stimulation increased the pancreatic output of somatostatinlike immunoreactivity (SLI) (delta = +248 +/- 81 fmol/min, P less than 0.005; base-line levels = 455 +/- 150 fmol/min). min). Arterial plasma SLI levels increased as well (delta = +16 +/- 3 fmol/ml, P less than 0.001; base-line levels = 65 +/- 3 fmol/ml), reflecting stimulation of extrapancreatic SLI secretion. Significant vagal activation was verified by a fivefold increase of pancreatic output of pancreatic polypeptide (PP) (delta = +31.4 +/- 5.9 ng/min, P less than 0.001; base-line levels = 7.8 +/- 0.9 ng/min). Atropine pretreatment (n = 6) inhibited partially both the PP response (delta = +7.9 +/- 3.8 ng/min after atropine) and the pancreatic SLI response (delta = +92 +/- 29 fmol/min) to vagal nerve stimulation. However, atropine pretreatment did not modify the arterial SLI response (delta = +20 +/- 7 fmol/ml). Hexamethonium pretreatment (n = 9) completely abolished all three responses. We conclude that 1) electrical stimulation of the vagus stimulates pancreatic SLI, extrapancreatic SLI, and PP release in vivo in the dog; 2) both muscarinic and nonmuscarinic mechanisms mediate the PP and pancreatic SLI responses; 3) a nonmuscarinic mechanism mediates the extrapancreatic SLI response; and 4) all three responses are mediated via ganglionic nicotinic receptors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245785
Author(s):  
Shin Tokunaga ◽  
Takehisa Kawata

Evocalcet is a novel calcimimetic agent with fewer gastrointestinal (GI) adverse effects compared to cinacalcet. Although it is thought that cinacalcet induces GI side effects through the direct stimulation of the calcium receptor (CaR) expressed in the GI tract, the differences in the direct stimulatory effects of these two drugs on the GI tract have not been reported. In this study, we analyzed the difference in the GI effects of these two calcimimetic agents using miniature pigs by detecting vagus nerve stimulation after oral administration of the agents. Although cinacalcet induced vomiting in miniature pigs, evocalcet never induced emetic symptoms. A significant increase in the vagus nerve action potentials was observed after the administration of cinacalcet. Although the increase of that after the administration of evocalcet was mild and not significant in comparison to that in the vehicle group, it was not significantly different from the vagus nerve action potentials after cinacalcet treatment.


Sign in / Sign up

Export Citation Format

Share Document