Electrical Stimulation of the Rat Lumbar Spine Induces Reflex Action Potentials in the Nerves to the Lower Abdomen

Spine ◽  
2000 ◽  
Vol 25 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Yuzuru Takahashi ◽  
Jiro Hirayama ◽  
Yoshio Nakajima ◽  
Seiji Ohtori ◽  
Kazuhisa Takahashi
1988 ◽  
Vol 118 (3) ◽  
pp. 471-483 ◽  
Author(s):  
L. M. Voloschin ◽  
E. Décima ◽  
J. H. Tramezzani

ABSTRACT Electrical stimulation of the XIII thoracic nerve (the 'mammary nerve') causes milk ejection and the release of prolactin and other hormones. We have analysed the route of the suckling stimulus at the level of different subgroups of fibres of the teat branch of the XIII thoracic nerve (TBTN), which innervates the nipple and surrounding skin, and assessed the micromorphology of the TBTN in relation to lactation. There were 844 ± 63 and 868 ± 141 (s.e.m.) nerve fibres in the TBTN (85% non-myelinated) in virgin and lactating rats respectively. Non-myelinated fibres were enlarged in lactating rats; the modal value being 0·3–0·4 μm2 for virgin and 0·4–0·5 μm2 for lactating rats (P > 0·001; Kolmogorov–Smirnov test). The modal value for myelinated fibres was 3–6 μm2 in both groups. The compound action potential of the TBTN in response to electrical stimulation showed two early volleys produced by the Aα- and Aδ-subgroups of myelinated fibres (conduction velocity rate of 60 and 14 m/s respectively), and a late third volley originated in non-myelinated fibres ('C') group; conduction velocity rate 1·4 m/s). Before milk ejection the suckling pups caused 'double bursts' of fibre activity in the Aδ fibres of the TBTN. Each 'double burst' consisted of low amplitude action potentials and comprised two multiple discharges (33–37 ms each) separated by a silent period of around 35 ms. The 'double bursts' occurred at a frequency of 3–4/s, were triggered by the stimulation of the nipple and were related to fast cheek movements visible only by watching the pups closely. In contrast, the Aα fibres of the TBTN showed brief bursts of high amplitude potentials before milk ejection. These were triggered by the stimulation of cutaneous receptors during gross slow sucking motions of the pup (jaw movements). Immediately before the triggering of milk ejection the mother was always asleep and a low nerve activity was recorded in the TBTN at this time. When reflex milk ejection occurred, the mother woke and a brisk increase in nerve activity was detected; this decreased when milk ejection was accomplished. In conscious rats the double-burst type of discharges in Aδ fibres was not observed, possibly because this activity cannot be detected by the recording methods currently employed in conscious animals. During milk ejection, action potentials of high amplitude were conveyed in the Aα fibres of the TBTN. During the treading time of the stretch reaction (SR), a brisk increase in activity occurred in larger fibres; during the stretching periods of the SR a burst-type discharge was again observed in slow-conducting afferents; when the pups changed nipple an abrupt increase in activity occurred in larger fibres. In summary, the non-myelinated fibres of the TBTN are increased in diameter during lactation, and the pattern of suckling-evoked nerve activity in myelinated fibres showed that (a) the double burst of Aδ fibres, produced by individual sucks before milk ejection, could be one of the conditions required for the triggering of the reflex, and (b) the nerve activity displayed during milk-ejection action may result, at least in part, from 'non-specific' stimulation of cutaneous receptors. J. Endocr. (1988) 118, 471–483


2005 ◽  
Vol 22 (2) ◽  
pp. 227-243 ◽  
Author(s):  
Tatiana Y. Kostrominova ◽  
Douglas E. Dow ◽  
Robert G. Dennis ◽  
Richard A. Miller ◽  
John A. Faulkner

Loss of innervation in skeletal muscles leads to degeneration, atrophy, and loss of force. These dramatic changes are reflected in modifications of the mRNA expression of a large number of genes. Our goal was to clarify the broad spectrum of molecular events associated with long-term denervation of skeletal muscles. A microarray study compared gene expression profiles of 2-mo denervated and control extensor digitorum longus (EDL) muscles from 6-mo-old rats. The study identified 121 genes with increased and 7 genes with decreased mRNA expression. The expression of 107 of these genes had not been identified previously as changed after denervation. Many of the genes identified were genes that are highly expressed in skeletal muscles during embryonic development, downregulated in adults, and upregulated after denervation of muscle fibers. Electrical stimulation of denervated muscles preserved muscle mass and maximal force at levels similar to those in the control muscles. To understand the processes underlying the effect of electrical stimulation on denervated skeletal muscles, mRNA and protein expression of a number of genes, identified by the microarray study, was compared. The hypothesis was that loss of nerve action potentials and muscle contractions after denervation play the major roles in upregulation of gene expression in skeletal muscles. With electrical stimulation of denervated muscles, the expression levels for these genes were significantly downregulated, consistent with the hypothesis that loss of action potentials and/or contractions contribute to the alterations in gene expression in denervated skeletal muscles.


1983 ◽  
Vol 107 (1) ◽  
pp. 21-47 ◽  
Author(s):  
C.J.H. ELLIOTT

(1) Hairs in the subcostal hair plates of the wings of crickets have a high angular stiffness (5.5μNm rad1) when bent about their base. The mean threshold required to elicit action potentials is 15°. Viscous drag from air movements will not deflect the hairs sufficiently to excite them; this will only occur when the hair is bent by the opposite wing. (2) The hair sensillae project to the ventral association area of the mesothoracic ganglion, but the endings of the stridulatory motor neurones are all in dorsal or lateral neuropiles of the thoracic ganglia. (3) Electrical stimulation of the hair plates evokes reliable EPSPs in opener (M99), closer (M90) and wing folding (M85) motor neurones, after latencies of 4–20 ms, depending on the neurone. Properties of the hairs and motor neurones suggest that these EPSPs in the wing folding muscle (M85) and closer (M90) could play an important role in the control of wing position seen in recent behavioural study.


1984 ◽  
Vol 111 (1) ◽  
pp. 191-199
Author(s):  
U. BÄSSLER

Autotomized legs of the stick insect Cuniculina impigra bend rapidly and rhythmically at the femur-tibia joint. These flexions occur at a frequency 1–6 Hz immediately after autotomy and decrease in frequency and amplitude with time. Each flexion is produced by a burst of 1–14 action potentials in a single motor axon of the flexor tibiae muscle (bursting axon). These rhythmic discharges are generated in a very restricted part of the crural nerve, which contains the bursting axon, close to the autotomy point and appear whenever the nerve is cut in the immediate vicinity of this generator region. Rhythmic flexion can also be elicited by electrical stimulation of the crural nerve. The bursting axon is of small diameter. It innervates all or most of flexor tibiae muscle in which it produces relatively large EPSPs. Each EPSP elicits one muscle twitch. These fuse into a brief tetanus, whose amplitude is proportional to the number of spikes in a burst. Each tetanus produces one flexion. This behaviour does not occur in the autotomized legs of several related species.


1965 ◽  
Vol 42 (1) ◽  
pp. 1-6
Author(s):  
J. E. TREHERNE

1. In the haemolymph of the stick insect Carausius morosus the concentration of potassium exceeds that of sodium and the concentration of magnesium exceeds that of calcium. The implications of this situation for nerve conduction have been studied. 2. Conduction is maintained in intact and desheathed preparations of the fourth adbominal ganglion under irrigation with a solution resembling haemolymph in ionic composition. 3. Action potentials recorded in response to electrical stimulation of the nerve cord decline in sodium-free solutions, both in intact and in desheathed preparations. 4. Conduction declines slowly under irrigation with magnesium-free solutions both in intact and in desheathed preparations.


1990 ◽  
Vol 64 (3) ◽  
pp. 932-947 ◽  
Author(s):  
D. P. Wellis ◽  
J. W. Scott

1. Intracellular recordings were made from 28 granule cells and 6 periglomerular cells of the rat olfactory bulb during odor stimulation and electrical stimulation of the olfactory nerve layer (ONL) and lateral olfactory tract (LOT). Neurons were identified by injection of horseradish peroxidase (HRP) or biocytin and/or intracellular response characteristics. Odorants were presented in a cyclic sniff paradigm, as reported previously. 2. All interneurons could be activated from a wide number of stimulation sites on the ONL, with distances exceeding their known dendritic spreads and the dispersion of nerve fibers within the ONL, indicating that multisynaptic pathways must also exist at the glomerular region. All types of interneurons also responded to odorant stimulation, showing a variety of responses. 3. Granule cells responded to electrical stimulation of the LOT and ONL as reported previously. However, intracellular potential, excitability, and conductance analysis suggested that the mitral cell-mediated excitatory postsynaptic potential (EPSP) is followed by a long inhibitory postsynaptic potential (IPSP). An early negative potential, before the EPSP, was also observed in every granule cell and correlated with component I of the extracellular LOT-induced field potential. We have interpreted this negativity as a "field effect," that may be diagnostic of granule cells. 4. Most granule cells exhibited excitatory responses to odorant stimulation. Odors could produce spiking responses that were either nonhabituating (response to every sniff) or rapidly habituating (response to first sniff only). Other granule cells, while spiking to electrical stimulation, showed depolarizations that did not evoke spikes to odor stimulation. These depolarizations were transient with each sniff or sustained across a series of sniffs. These physiological differences to odor stimulation correlated with granule cell position beneath the mitral cell layer for 12 cells, suggesting that morphological subtypes of granule cells may show physiological differences. Some features of the granule cell odor responses seem to correlate with some of the features we have observed in mitral/tufted cell intracellular recordings. Only one cell showed inhibition to odors. 5. Periglomerular (PG) cells showed a response to ONL stimulation that was unlike that found in other olfactory bulb neurons. There was a long-duration hyperpolarization after a spike and large depolarization or burst of spikes (20-30 ms in duration). Odor stimulation produced simple bursts of action potentials, Odor stimulation produced simple bursts of action potentials, suggesting that PG cells may simply follow input from the olfactory nerve.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 79 (3) ◽  
pp. 1193-1209 ◽  
Author(s):  
Douglas P. Munoz ◽  
Peter J. Istvan

Munoz, Douglas P. and Peter J. Istvan. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J. Neurophysiol. 79: 1193–1209, 1998. The intermediate layers of the monkey superior colliculus (SC) contain neurons the discharges of which are modulated by visual fixation and saccadic eye movements. Fixation neurons, located in the rostral pole of the SC, discharge action potentials tonically during visual fixation and pause for most saccades. Saccade neurons, located throughout the remainder of the intermediate layers of the SC, discharge action potentials for saccades to a restricted region of the visual field. We defined the fixation zone as that region of the rostral SC containing fixation neurons and the saccade zone as the remainder of the SC. It recently has been hypothesized that a network of local inhibitory interneurons may help shape the reciprocal discharge pattern of fixation and saccade neurons. To test this hypothesis, we combined extracellular recording and microstimulation techniques in awake monkeys trained to perform oculomotor paradigms that enabled us to classify collicular fixation and saccade neurons. Microstimulation was used to electrically activate the fixation and saccade zones of the ipsilateral and contralateral SC to test for inhibitory and excitatory inputs onto fixation and saccade neurons. Saccade neurons were inhibited at short latencies following electrical stimulation of either the ipsilateral (1–5 ms) or contralateral (2–7 ms) fixation or saccade zones. Fixation neurons were inhibited 1–4 ms after electrical stimulation of the ipsilateral saccade zone. Stimulation of the contralateral saccade zone led to much weaker inhibition of fixation neurons. Stimulation of the contralateral fixation zone led to short-latency (1–2 ms) excitation of fixation neurons. Only a small percentage of saccade and fixation neurons were activated by the electrical stimulation (latency: 0.5–2.0 ms). These responses were confirmed as either orthodromic or antidromic responses using collision testing. The results suggest that a local network of inhibitory interneurons may help shape not only the reciprocal discharge pattern of fixation and saccade neurons but also permit lateral interactions between all regions of the ipsilateral and contralateral SC. These interactions therefore may be critical for maintaining stable visual fixation, suppressing unwanted saccades, and initiating saccadic eye movements to targets of interest.


1978 ◽  
Vol 41 (3) ◽  
pp. 609-620 ◽  
Author(s):  
B. Jahan-Parwar ◽  
S. M. Fredman

1. Intracellular stimulation of individual neurons in the two symmetrical A neuron clusters of the cerebral ganglion evoked contractions of both the foot and parapodia. Electrical stimulation of pedal and parapodial nerves caused antidromic action potentials in A neurons. Units recorded in the nerves followed the driven somatic spike 1:1. This suggests that the A neurons are presumptive pedal and parapodial motor neurons.2. Individual A neurons evoked both bilteral and unilateral contractions of the parapodia or split foot. Contractions in the parapodia were independent of those in the foot. An individual A neuron caused contractions in either the foot or the parapodia, but not both. Sequential transection of parapodial nerves had only a slight effect until a key nerve was cut. The contractions produced by a single A neuron on one side were then abolished. These data suggest that the motor fields of the A neurons are well defined within the foot or the parapodia. 3. Parapodial contractions produced by individual A neurons are not dependent on the excitation of follower motor neurons. Blocking synaptic transmission by the addition of CoCl2 did not eliminate the contractions produced by driving individual A neurons. This is consistent with the A neurons being motor neurons. 4. Intracellular stimulation of individual neurons in the symmetrical B neuron clusters of the cerebral ganglion also evoked pedal and parapodial contractions. Electrical stimulation of the pedal and parapodial nerves elicited antidromic spikes in these neurons. Individual B neurons caused contractions in both the foot and parapodia. This suggests that the B neurons are motor neurons with very large motor fields. 5. Filling the pedal and parapodial nerves with cobalt primarily filled the cell bodies of neurons located in the pedal and pleural ganglia. The somata of A and B neurons were also occasionally filled. This is consistent with the electrophisiological results. 6. Other neurons also evoked parapodial contractions. Intracellular stimulation of neurons in the pedal and pleural ganglia caused parapodial contractions in intact animals. Some of these neurons were excited by stretching the parapodia or touching the tentacles. 7. The B neurons are strongly excited by tactile stimulation of the tentacles. Since they can cause pedal and parapodial contractions they may mediate reflex contractions elicited by tentacular stimulation. Stretching the parapodia only occasionally caused the A neurons to fire. This makes it unlikely that they make a major contribution to pedal and parapodial proprioceptive reflexes. These reflexes are probably controlled by neurons in the pedal and pleural ganglia.


2006 ◽  
Vol 100 (3) ◽  
pp. 800-806 ◽  
Author(s):  
David D. Fuller ◽  
Francis J. Golder ◽  
E. B. Olson ◽  
Gordon S. Mitchell

We tested two hypotheses: 1) that the spontaneous enhancement of phrenic motor output below a C2 spinal hemisection (C2HS) is associated with plasticity in ventrolateral spinal inputs to phrenic motoneurons; and 2) that phrenic motor recovery in anesthetized rats after C2HS correlates with increased capacity to generate inspiratory volume during hypercapnia in unanesthetized rats. At 2 and 4 wk post-C2HS, ipsilateral phrenic nerve activity was recorded in anesthetized, paralyzed, vagotomized, and ventilated rats. Electrical stimulation of the ventrolateral funiculus contralateral to C2HS was used to activate crossed spinal synaptic pathway phrenic motoneurons. Inspiratory phrenic burst amplitudes ipsilateral to C2HS were larger in the 4- vs. 2-wk groups ( P < 0.05); however, no differences in spinally evoked compound phrenic action potentials could be detected. In unanesthetized rats, inspiratory volume and frequency were quantified using barometric plethysmography at inspired CO2 fractions between 0.0 and 0.07 (inspired O2 fraction 0.21, balance N2) before and 2, 3, and 5 wk post-C2HS. Inspiratory volume was diminished, and frequency enhanced, at 0.0 inspired CO2 fraction ( P < 0.05) 2-wk post-C2HS; further changes were not observed in the 3- and 5-wk groups. Inspiratory frequency during hypercapnia was unaffected by C2HS. Hypercapnic inspiratory volumes were similarly attenuated at all time points post-C2HS ( P < 0.05), thereby decreasing hypercapnic minute ventilation ( P < 0.05). Thus increases in ipsilateral phrenic activity during 4 wk post-C2HS have little impact on the capacity to generate inspiratory volume in unanesthetized rats. Enhanced crossed phrenic activity post-C2HS may reflect plasticity associated with spinal axons not activated by our ventrolateral spinal stimulation.


Sign in / Sign up

Export Citation Format

Share Document