Mo1947 DETECTION OF NON - TOXIGENIC CLOSTRIDIOIDES DIFFICILE IN THE GUT MICROBIOME BY NEXT GENERATION SEQUENCING SHOTGUN UTILIZING KRAKEN METAGENOMIC ANALYSIS.

2020 ◽  
Vol 158 (6) ◽  
pp. S-989
Author(s):  
Andreas Papoutsis ◽  
Sabine Hazan
SCIENTIARVM ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 15-21
Author(s):  
Katherine Milagros Quispe Medina ◽  
◽  
Angel Sixto Mamani Ruelas ◽  
Brenda Jasmin Alvarez Vera ◽  
Yasmin Yessenia Silvestre Gutierrez ◽  
...  

The research of the microbiome concerning various diseases has grown in the last ten years due to the advances in molecular biology and next-generation sequencing, finding interactions with various pathologies. The new coronavirus 19 (SARS-COV 2) pandemic has aroused interest in the study of multiple factors that could influence in the development of symptoms mainly due to the interaction of the microbiome whether of the respiratory or gastrointestinal tract finally in the prognosis. Therefore, in this study, we focus on reviewing and analyzing the current bibliography of research and clinical cases about the relationship between the lung and gut microbiome and COVID-19, highlighting its effect on infected patients, aiming to contribute to this new line of research. Keywords: Microbiome, COVID-19, SARS-COV 2, gut microbiome, lung microbiome.


Neuroforum ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 39-47
Author(s):  
Barbara Gisevius ◽  
Aiden Haghikia ◽  
Sarah Hirschberg

Zusammenfassung Aktuelle Forschungsergebnisse im Bereich neurodegenerativer Erkrankungen deuten vermehrt darauf hin, dass die Ernährung und damit assoziiert die Zusammensetzung des Darm-Mikrobioms einen entscheidenden Einfluss auf die Entstehung und den Verlauf verschiedenster Krankheiten haben. Die sogenannte Darm-Hirn Achse, oder präziser die Darm-Mikrobiom-Hirn Achse hat dadurch deutlich an Aufmerksamkeit gewonnen. Dabei kann der Darm das zentrale Nervensystem auf unterschiedliche Weisen beeinflussen, I) direkt durch bakterielle Bestandteile und Metaboliten von Bakterien, II) durch Manipulation der im Körper zirkulierenden Immunzellen, oder III) durch direkten Kontakt, z. B. über den N. vagus. Fortschritte auf dem Gebiet der Molekularbiologie, wie das Next Generation Sequencing ermöglichen aufgrund ihres hohen Auflösungsvermögens die genaue Identifikation von Bakterien und die Kompositionen ganzer Mikrobiome. Dadurch ist es möglich, die Interaktionen zwischen dem intestinalen Mikrobiom, dem Metabolom und dem Darm- assoziierten Immunsystem detailliert zu erforschen. In dieser Arbeit diskutieren wir den Einfluss des Mikrobioms, der Ernährung und den damit verbundenen Gesundheitszustand auf die Neuroregeneration. Der Fokus liegt dabei auf der Möglichkeit, wie dieses Wissen in Zukunft für therapeutische Zwecke genutzt werden kann.


2021 ◽  
Vol 8 ◽  
Author(s):  
Murugan Subbiah ◽  
Nagaraja Thirumalapura ◽  
David Thompson ◽  
Suresh V. Kuchipudi ◽  
Bhushan Jayarao ◽  
...  

Metagenomic sequencing of clinical diagnostic specimens has a potential for unbiased detection of infectious agents, diagnosis of polymicrobial infections and discovery of emerging pathogens. Herein, next generation sequencing (NGS)-based metagenomic approach was used to investigate the cause of illness in a subset of horses recruited for a tick-borne disease surveillance study during 2017–2019. Blood samples collected from 10 horses with suspected tick-borne infection and five apparently healthy horses were subjected to metagenomic analysis. Total genomic DNA extracted from the blood samples were enriched for microbial DNA and subjected to shotgun next generation sequencing using Nextera DNA Flex library preparation kit and V2 chemistry sequencing kit on the Illumina MiSeq sequencing platform. Overall, 0.4–0.6 million reads per sample were analyzed using Kraken metagenomic sequence classification program. The taxonomic classification of the reads indicated that bacterial genomes were overrepresented (0.5 to 1%) among the total microbial reads. Most of the bacterial reads (~91%) belonged to phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria and Tenericutes in both groups. Importantly, 10–42.5% of Alphaproteobacterial reads in 5 of 10 animals with suspected tick-borne infection were identified as Anaplasma phagocytophilum. Of the 5 animals positive for A. phagocytophilum sequence reads, four animals tested A. phagocytophilum positive by PCR. Two animals with suspected tick-borne infection and A. phagocytophilum positive by PCR were found negative for any tick-borne microbial reads by metagenomic analysis. The present study demonstrates the usefulness of the NGS-based metagenomic analysis approach for the detection of blood-borne microbes.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Ana L. Ramírez ◽  
Agathe M. G. Colmant ◽  
David Warrilow ◽  
Bixing Huang ◽  
Alyssa T. Pyke ◽  
...  

ABSTRACT Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future. IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.


2019 ◽  
Vol 10 ◽  
Author(s):  
Theodoros Koutsandreas ◽  
Efthymios Ladoukakis ◽  
Eleftherios Pilalis ◽  
Dimitra Zarafeta ◽  
Fragiskos N. Kolisis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document