79 MISSED DIAGNOSIS OF PANCREATIC DUCTAL ADENOCARCINOMA DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORK

2021 ◽  
Vol 160 (6) ◽  
pp. S-18
Author(s):  
Sanne A. Hoogenboom ◽  
Kamalakkannan Ravi ◽  
Megan M. Engels ◽  
Ismail Irmakci ◽  
Elif Keles ◽  
...  
2020 ◽  
Vol 9 (12) ◽  
pp. 4013
Author(s):  
Sebastian Ziegelmayer ◽  
Georgios Kaissis ◽  
Felix Harder ◽  
Friederike Jungmann ◽  
Tamara Müller ◽  
...  

The differentiation of autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC) poses a relevant diagnostic challenge and can lead to misdiagnosis and consequently poor patient outcome. Recent studies have shown that radiomics-based models can achieve high sensitivity and specificity in predicting both entities. However, radiomic features can only capture low level representations of the input image. In contrast, convolutional neural networks (CNNs) can learn and extract more complex representations which have been used for image classification to great success. In our retrospective observational study, we performed a deep learning-based feature extraction using CT-scans of both entities and compared the predictive value against traditional radiomic features. In total, 86 patients, 44 with AIP and 42 with PDACs, were analyzed. Whole pancreas segmentation was automatically performed on CT-scans during the portal venous phase. The segmentation masks were manually checked and corrected if necessary. In total, 1411 radiomic features were extracted using PyRadiomics and 256 features (deep features) were extracted using an intermediate layer of a convolutional neural network (CNN). After feature selection and normalization, an extremely randomized trees algorithm was trained and tested using a two-fold shuffle-split cross-validation with a test sample of 20% (n = 18) to discriminate between AIP or PDAC. Feature maps were plotted and visual difference was noted. The machine learning (ML) model achieved a sensitivity, specificity, and ROC-AUC of 0.89 ± 0.11, 0.83 ± 0.06, and 0.90 ± 0.02 for the deep features and 0.72 ± 0.11, 0.78 ± 0.06, and 0.80 ± 0.01 for the radiomic features. Visualization of feature maps indicated different activation patterns for AIP and PDAC. We successfully trained a machine learning model using deep feature extraction from CT-images to differentiate between AIP and PDAC. In comparison to traditional radiomic features, deep features achieved a higher sensitivity, specificity, and ROC-AUC. Visualization of deep features could further improve the diagnostic accuracy of non-invasive differentiation of AIP and PDAC.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4-14
Author(s):  
Vladimir Budak ◽  
Ekaterina Ilyina

The article proposes the classification of lenses with different symmetrical beam angles and offers a scale as a spot-light’s palette. A collection of spotlight’s images was created and classified according to the proposed scale. The analysis of 788 pcs of existing lenses and reflectors with different LEDs and COBs carried out, and the dependence of the axial light intensity from beam angle was obtained. A transfer training of new deep convolutional neural network (CNN) based on the pre-trained GoogleNet was performed using this collection. GradCAM analysis showed that the trained network correctly identifies the features of objects. This work allows us to classify arbitrary spotlights with an accuracy of about 80 %. Thus, light designer can determine the class of spotlight and corresponding type of lens with its technical parameters using this new model based on CCN.


Sign in / Sign up

Export Citation Format

Share Document