Secretory leukocyte protease inhibitor in mice regulates local and remote organ inflammatory injury induced by hepatic ischemia/reperfusion

1999 ◽  
Vol 117 (4) ◽  
pp. 953-961 ◽  
Author(s):  
Alex B. Lentsch ◽  
Hiroyuki Yoshidome ◽  
Roscoe L. Warner ◽  
Peter A. Ward ◽  
Michael J. Edwards
2021 ◽  
Vol 28 (9) ◽  
pp. 1671
Author(s):  
Levent Demirtas ◽  
Cebrail Gursul ◽  
Ahmet Gurbuzel ◽  
Ilyas Sayar ◽  
Mehmet Gurbuzel ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 88-100
Author(s):  
Fares E.M. Ali ◽  
Heba M. Saad Eldien ◽  
Nashwa A.M. Mostafa ◽  
Abdulrahman H. Almaeen ◽  
Mohamed R.A. Marzouk ◽  
...  

Objective: The present study was conducted to elucidate the underlying molecular mechanism as well as the potential hepatoprotective effects of royal jelly (RJ) against hepatic ischemia/reperfusion (IR) injury. Methods: Rats were assigned into four groups; sham (received vehicle), IR (30 minutes ischemia and 45 minutes reperfusion), sham pretreated with RJ (200 mg/kg P.O.), and IR pretreated with RJ (200 mg/kg P.O.). The experiment has lasted for 28 days. Results: Hepatic IR significantly induced hepatic dysfunctions, as manifested by elevation of serum transaminases, ALP and LDH levels. Moreover, hepatic IR caused a significant up-regulation of P38-MAPK, NF-κB-p65, TNF-α and MDA levels along with marked down-regulation of Nrf-2, HO-1, COX-4, cytoglobin, IκBa, IL-10, GSH, GST and SOD levels. Additionally, marked histopathological changes were observed after hepatic IR injury. On the contrary, pretreatment with RJ significantly improved hepatic functions along with the alleviation of histopathological changes. Moreover, RJ restored oxidant/antioxidant balance as well as hepatic expressions of Nrf-2, HO-1, COX-4, and cytoglobin. Simultaneously, RJ significantly mitigated the inflammatory response by down-regulation of P38-MAPK, NF-κB-p65, TNF-α expression. Conclusion: The present results revealed that RJ has successfully protected the liver against hepatic IR injury through modulation of cytoglobin, Nrf-2/HO-1/COX-4, and P38-MAPK/NF-κB-p65/TNF-α signaling pathways.


MicroRNA ◽  
2020 ◽  
Vol 09 ◽  
Author(s):  
Chrysanthos D. Christou ◽  
Georgios Tsoulfas

Introduction: Ischemia-reperfusion (I/R) injuries are caused by complex interrelated mechanisms and pathways. Regarding the liver, I/R injuries and their clinical manifestations are crucial for the surgical outcome. Despite its importance, there is no broadly accepted therapy either for the prevention or for the management of I/R injury. I/R injury of the liver can occur either during hepatic surgery (warm) or during the transplantation procedure (cold). MicroRNAs play a pivotal role in the mechanism of I/R injury, as they regulate the expression of the cellular participants and humoral factors associated with I/R injury. Objective: In this review, we highlight the microRNAs that are involved in the I/R injury of the liver, and the molecular pathways that they regulate. In addition, we discuss the potential role of circulating microRNAs as biomarkers and their role as pharmacological targets in the prevention, diagnosis and treatment of I/R injuries. Method: We conducted a comprehensive review of the PubMed bibliographic database regarding microRNAs and I/R injuries of the liver. Results: In diagnostics, microRNA panels could replace invasive diagnostic procedures, relieving patients of the associated complications. In therapeutics, microRNA agomirs, antagomirs and other drugs can be used to shift the balance between proapoptotic and survival pathways, to alleviate the liver damage caused by I/R. In transplantation procedures, microRNA profiling could decrease the incidence of early graft dysfunction, especially regarding marginal grafts. Conclusion: Although microRNAs seem a very promising clinical tool in the management of I/R injuries, further research is required, until microRNAs become a novel tool in the diagnosis and monitoring of an I/R injury of the liver.


Sign in / Sign up

Export Citation Format

Share Document