Quantitative determination of the oxidation state of iron in biotite using X-ray photoelectron spectroscopy: I. Calibration

1997 ◽  
Vol 61 (21) ◽  
pp. 4519-4530 ◽  
Author(s):  
Stuart P. Raeburn ◽  
Eugene S. Ilton ◽  
David R. Veblen
Clay Minerals ◽  
1982 ◽  
Vol 17 (4) ◽  
pp. 477-481 ◽  
Author(s):  
S. Evans ◽  
E. Raftery

It is usually assumed that the oxidation state of the small proportion of Mn sometimes present in micas is +2, although there is evidence from electronic spectroscopy (Burns, 1970) for at least the occasional occurrence of Mn(III) in manganophyllite. We describe here X-ray photoelectron spectroscopic (XPS) measurements on the Mn in a Norwegian lepidolite which was the subject of a concurrent structural study by X-ray photoelectron diffraction (Evans & Raftery, 1982). To establish the Mn oxidation state we have compared the Mn2p core-electron binding energies (BE), the Mn2P3/2-O ls BE differences, and the Mn2p XPS peak profiles from the four common oxides of manganese (MnO, Mn3O4, Mn2O3 and MnO2) with those from the lepidolite. A re-examination of these oxides was undertaken because the agreement between reports in the literature was unsatisfactory, and uncertainty existed concerning the integrity of some of the surfaces previously examined.


2015 ◽  
Vol 7 (3) ◽  
pp. 1720-1725 ◽  
Author(s):  
Marco D. Torelli ◽  
Rebecca A. Putans ◽  
Yizheng Tan ◽  
Samuel E. Lohse ◽  
Catherine J. Murphy ◽  
...  

2021 ◽  
Vol 57 (9) ◽  
pp. 893-900
Author(s):  
Yu. A. Teterin ◽  
A. V. Makarov ◽  
A. V. Safonov ◽  
E. V. Zakharova ◽  
K. I. Maslakov ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


Sign in / Sign up

Export Citation Format

Share Document