Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems

2002 ◽  
Vol 45 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Han-Taw Chen ◽  
Sheng-Yih Lin ◽  
Hung-Ru Wang ◽  
Lih-Chuan Fang
2021 ◽  
Vol 24 (1) ◽  
pp. 6-12
Author(s):  
Yurii M. Matsevytyi ◽  
◽  
Valerii V. Hanchyn ◽  

On the basis of A. N. Tikhonov’s regularization theory, a method is developed for solving inverse heat conduction problems of identifying a smooth outer boundary of a two-dimensional region with a known boundary condition. For this, the smooth boundary to be identified is approximated by Schoenberg’s cubic splines, as a result of which its identification is reduced to determining the unknown approximation coefficients. With known boundary and initial conditions, the body temperature will depend only on these coefficients. With the temperature expressed using the Taylor formula for two series terms and substituted into the Tikhonov functional, the problem of determining the increments of the coefficients can be reduced to solving a system of linear equations with respect to these increments. Having chosen a certain regularization parameter and a certain function describing the shape of the outer boundary as an initial approximation, one can implement an iterative process. In this process, the vector of unknown coefficients for the current iteration will be equal to the sum of the vector of coefficients in the previous iteration and the vector of the increments of these coefficients, obtained as a result of solving a system of linear equations. Having obtained a vector of coefficients as a result of a converging iterative process, it is possible to determine the root-mean-square discrepancy between the temperature obtained and the temperature measured as a result of the experiment. It remains to select the regularization parameter in such a way that this discrepancy is within the measurement error. The method itself and the ways of its implementation are the novelty of the material presented in this paper in comparison with other authors’ approaches to the solution of geometric inverse heat conduction problems. When checking the effectiveness of using the method proposed, a number of two-dimensional test problems for bodies with a known location of the outer boundary were solved. An analysis of the influence of random measurement errors on the error in identifying the outer boundary shape is carried out.


2003 ◽  
Vol 125 (6) ◽  
pp. 1197-1205 ◽  
Author(s):  
Sun Kyoung Kim ◽  
Woo Il Lee

A solution scheme based on the maximum entropy method (MEM) for the solution of two-dimensional inverse heat conduction problems is established. MEM finds the solution which maximizes the entropy functional under the given temperature measurements. The proposed method converts the inverse problem to a nonlinear constrained optimization problem. The constraint of the optimization problem is the statistical consistency between the measured temperature and the estimated temperature. Successive quadratic programming (SQP) facilitates the numerical estimation of the maximum entropy solution. The characteristic feature of the proposed method is investigated with the sample numerical results. The presented results show considerable enhancement in resolution for stringent cases in comparison with a conventional method.


Sign in / Sign up

Export Citation Format

Share Document