scholarly journals Functional analysis of the immune system by gene targeting

1995 ◽  
Vol 67 ◽  
pp. 78
Author(s):  
Nobuaki Yoshida
2013 ◽  
Vol 6 (3) ◽  
pp. 841-854 ◽  
Author(s):  
M. van der Vaart ◽  
J. J. van Soest ◽  
H. P. Spaink ◽  
A. H. Meijer

Hereditas ◽  
2020 ◽  
Vol 157 (1) ◽  
Author(s):  
Kirsten Hildebrandt ◽  
Nicole Bach ◽  
Dieter Kolb ◽  
Uwe Walldorf

Abstract Background The Drosophila hindgut is commonly used model for studying various aspects of organogenesis like primordium establishment, further specification, patterning, and morphogenesis. During embryonic development of Drosophila, many transcriptional activators are involved in the formation of the hindgut. The transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, is expressed in the hindgut and nervous system of developing Drosophila embryos, but due to the lack of mutants no functional analysis has been conducted yet. Results We show that two different otp transcripts, a hindgut-specific and a nervous system-specific form, are present in the Drosophila embryo. Using an Otp antibody, a detailed expression analysis during hindgut development was carried out. Otp was not only expressed in the embryonic hindgut, but also in the larval and adult hindgut. To analyse the function of otp, we generated the mutant otp allele otpGT by ends-out gene targeting. In addition, we isolated two EMS-induced otp alleles in a genetic screen for mutants of the 57B region. All three otp alleles showed embryonic lethality with a severe hindgut phenotype. Anal pads were reduced and the large intestine was completely missing. This phenotype is due to apoptosis in the hindgut primordium and the developing hindgut. Conclusion Our data suggest that Otp is another important factor for hindgut development of Drosophila. As a downstream factor of byn Otp is most likely present only in differentiated hindgut cells during all stages of development rather than in stem cells.


DNA Research ◽  
2013 ◽  
Vol 21 (1) ◽  
pp. 1-13 ◽  
Author(s):  
F. Zhao ◽  
C. Yan ◽  
X. Wang ◽  
Y. Yang ◽  
G. Wang ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 226
Author(s):  
A. Byrne ◽  
B. Beaton ◽  
K. Wells

Gene targeting in mammalian cells has become a routine technique and is currently used to study gene function, create biomedical models, and generate potential tissue sources for xenotransplantation. Severe combined immunodeficiency (SCID) is a condition characterised by the absence of T cells and a lack of B cell function. Severe combined immunodeficiency affects ~1 out of every 100 000 infants. Autosomal recessive SCID can occur due to a mutation within the recombination activating genes (RAG-1/RAG-2) that play a role in recombination of immunoglobulins and T-cell receptors. Gene targeting has been used to create mouse models to study the effects of a RAG-1 or RAG-2 deficiency on the immune system. In 1992, Mombaerts et al. generated a homozygous mouse model of RAG-1 deficiency, whereas Shinkai et al. generated a homozygous mouse model of RAG-2. Both models resulted in the absence of mature T or B lymphocytes; which was concluded to be due to the lack of the ability to initiate the V(D)J recombination process. Because of the anatomical and physiological similarities between humans and pigs, a swine model of both RAG-1 and RAG-2 deficiency would have utility. We hypothesise that disruption of RAG-1, RAG-2, or both in swine will result in a SCID phenotype. A first step in the creation of a swine SCID model is to assemble targeting vectors. The objective of this work was to construct targeting vectors. To accomplish this goal, genomic DNA from porcine fetal fibroblasts was used to amplify a 6840-bp PCR product including the porcine RAG-1 gene. This fragment was cloned into TOPO pCR-XL (Invitrogen, Carlsbad, CA, USA). So that a mammalian G418 resistance cassette could be used for selection of targeting events, this plasmid was modified to remove the endogenous AphII gene (provides G418 resistance). The pKW4 contains LoxP (locus of X-ing over) sites that flank a G418 resistance cassette (based on mammalian codon usage), which is driven by a phosphoglycerate kinase (PGK) promoter (Lorson et al. 2011). This cassette was inserted into the RAG-1 gene to create the targeting construct pAB6. For RAG2, a 9466-bp PCR product i ncluding the RAG-2 gene was amplified and cloned into TOPO pCR-Blunt II (Invitrogen). The LoxP flanked G418 resistance cassette from pKW4 was inserted into the second exon of the RAG-2 gene sequence, creating the targeting construct pAB13. Further, diagnostic screening strategies were developed and validated to discriminate gene-targeting events from random integration. We report here 2 targeting vectors and validated screening methods for gene targeting in porcine fetal fibroblasts that have been validated for cloning. These vectors will be applied toward an effort to create a porcine SCID model. The implications of such a model include evaluation of basic immune function, evaluation of the innate immune system in vaccine efficacy, and organ transplantation.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Gina Sykes ◽  
Yusra Batool ◽  
Joseph Kamtchum Tatuene ◽  
Sarah Zehnder ◽  
Glen C Jickling

Introduction: Immune system dysregulation occurs with age. This includes an increase in inflammation, and immunosenescence, the inability to efficiently respond to new immune challenges. These changes are evident in various diseases but have yet to be evaluated in a population with ischemic stroke. Age is an important factor in stroke, contributing to stroke risk, outcome and risk of hemorrhagic transformation. This study aimed to assess the changes that occur with age in the leukocyte gene expression of patients with ischemic stroke. Methods: Two cohorts of acute ischemic stroke patients were analyzed; cohort 1 (n=94) and cohort 2 (n=79). RNA was isolated from PAXgene tubes and processed on Affymetrix microarrays. Differentially expressed genes associated with age quartiles were identified by ANCOVA, adjusted for sex and batch. Functional analysis identified age-associated pathways. Differentially expressed genes were compared with previous non-stroke aging studies in whole blood. Results: There were 61 and 442 age-associated genes in cohorts 1 and 2 respectively (FDR-corrected p<0.05, partial correlation coefficient ≥ |0.3|). Nineteen genes, including CR2, CCR6 and CXCR5 , were found in common and decreased with age among both cohorts (max-log10(p value) = 17). Functional analysis of the 61 and 442 genes revealed with advancing age there is a change in the humoral immune system, including antibody production and B cell proliferation. When compared to aging gene expression studies in controls, 52% of age-associated genes in cohort 1 and 31% of cohort 2 age-associated genes overlapped with those found in controls, and 16 of the 19 common genes to both cohorts overlapped in controls (max-log10(p value) = 15). Conclusion: In patients with acute stroke there is a change in leukocyte gene expression with advancing age. Changes included a shift in humoral immune response with a potentially impaired B cell response. While many of the age-associated alterations in gene expression present in stroke are similar to non-stroke controls, these changes warrant further investigation for their impact on stroke outcome and risk.


Sign in / Sign up

Export Citation Format

Share Document