Measured deposition of aerosol particles on a two-dimensional ribbed surface in a turbulent duct flow

1999 ◽  
Vol 30 (9) ◽  
pp. 1201-1214 ◽  
Author(s):  
A.C.K Lai ◽  
M.A Byrne ◽  
A.J.H Goddard
10.2514/3.694 ◽  
1995 ◽  
Vol 9 (3) ◽  
pp. 508-515 ◽  
Author(s):  
C. A. C. Santos ◽  
D. M. Brown ◽  
S. Kakac ◽  
R. M. Cotta

2009 ◽  
Vol 633 ◽  
pp. 147-158 ◽  
Author(s):  
SEBASTIAN GROSSE ◽  
WOLFGANG SCHRÖDER

The wall-shear stress distribution in turbulent duct flow has been assessed using the micro-pillar shear-stress sensor MPS3. The spatial resolution of the sensor line is 10.8l+(viscous units) and the total field of view of 120l+along the spanwise direction allows to capture characteristic dimensions of the wall-shear stress distribution at sufficiently high resolution. The results show the coexistence of low-shear and high-shear regions representing ‘footprints’ of near-wall coherent structures. The regions of low shear resemble long meandering bands locally interrupted by areas of higher shear stress. Conditional averages of the flow field indicate the existence of nearly streamwise counter-rotating vortices aligned in the streamwise direction. The results further show periods of very strong spanwise wall-shear stress to be related to the occurrence of high streamwise shear regions and momentum transfer towards the wall. These events go along with a spanwise oscillation and a meandering of the low-shear regions.


2021 ◽  
Vol 931 ◽  
Author(s):  
R. Akhmedagaev ◽  
O. Zikanov ◽  
Y. Listratov

Direct numerical simulations and linear stability analysis are carried out to study mixed convection in a horizontal duct with constant-rate heating applied at the bottom and an imposed transverse horizontal magnetic field. A two-dimensional approximation corresponding to the asymptotic limit of a very strong magnetic field effect is validated and applied, together with full three-dimensional analysis, to investigate the flow's behaviour in the previously unexplored range of control parameters corresponding to typical conditions of a liquid metal blanket of a nuclear fusion reactor (Hartmann numbers up to $10^4$ and Grashof numbers up to $10^{10}$ ). It is found that the instability to quasi-two-dimensional rolls parallel to the magnetic field discovered at smaller Hartmann and Grashof numbers in earlier studies also occurs in this parameter range. Transport of the rolls by the mean flow leads to magnetoconvective temperature fluctuations of exceptionally high amplitudes. It is also demonstrated that quasi-two-dimensional structure of flows at very high Hartmann numbers does not guarantee accuracy of the classical two-dimensional approximation. The accuracy deteriorates at the highest Grashof numbers considered in the study.


AIAA Journal ◽  
1987 ◽  
Vol 25 (1) ◽  
pp. 22-29 ◽  
Author(s):  
D.A. Shah ◽  
R.A. Antonia

1999 ◽  
Vol 67 (2) ◽  
pp. 274-281 ◽  
Author(s):  
D. Das ◽  
J. H. Arakeri

In this paper we give a procedure to obtain analytical solutions for unsteady laminar flow in an infinitely long pipe with circular cross section, and in an infinitely long two-dimensional channel, created by an arbitrary but given volume flow rate with time. In the literature, solutions have been reported when the pressure gradient variation with time is prescribed but not when the volume flow rate variation is. We present some examples: (a) the flow rate has a trapezoidal variation with time, (b) impulsively started flow, (c) fully developed flow in a pipe is impulsively blocked, and (d) starting from rest the volume flow rate oscillates sinusoidally. [S0021-8936(00)01702-5]


1992 ◽  
Vol 114 (4) ◽  
pp. 819-826 ◽  
Author(s):  
J. A. Walter ◽  
C.-J. Chen

This paper investigates flow characteristics for a benchmark experiment that is important for thermal hydraulic phenomena in nuclear power plant design. The flow visualization experiment is carried out for flow in a rectangular offset channel covering both the laminar and turbulent flow regimes. The Reynolds number, based on the inlet velocity and the height of the inlet channel, ranges from 25 to 4600. The offset channel is an idealized thermal hydraulic geometry. Duct flow expands in a rectangular chamber and exits to a duct that is offset from the entrance duct. The offset geometry creates zones of recirculation for thermal-hydraulic mixing. Flow patterns are visualized by a laser light sheet in the symmetry plane of the primary flow direction and in three cross-sectional planes. A charge-coupled device (CCD) images the flow field, simplifying the experimental process and subsequent image analyses. The flow pattern and size of the recirculation zones change dramatically with Reynolds number until the flow is fully turbulent. While the velocity field itself is predominantly two dimensional, it is shown that the walls of the chamber produce a fully three-dimensional flow that could not be predicted properly by a two-dimensional calculation. Quantitative measurements of particle pathlines from several images are superimposed to give a composite view of the velocity field at one of the Reynolds numbers examined.


Sign in / Sign up

Export Citation Format

Share Document