scholarly journals Molecular cloning of human Syk. A B cell protein-tyrosine kinase associated with the surface immunoglobulin M-B cell receptor complex.

1994 ◽  
Vol 269 (16) ◽  
pp. 12310-12319
Author(s):  
C.L. Law ◽  
S.P. Sidorenko ◽  
K.A. Chandran ◽  
K.E. Draves ◽  
A.C. Chan ◽  
...  
Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2933-2940 ◽  
Author(s):  
Françoise Vuillier ◽  
Gérard Dumas ◽  
Christian Magnac ◽  
Marie-Christine Prevost ◽  
Ana Inés Lalanne ◽  
...  

AbstractLow levels of B-cell-receptor (BCR) expression are the hallmark of tumoral B lymphocytes in B-cell chronic lymphocytic leukemia (B-CLL). These cells also respond inadequately to stimulation through the BCR. This receptor consists of a surface immunoglobulin associated with a CD79a/CD79b heterodimer. We previously showed that the intracellular synthesis of BCR components, from transcription onward, is normal. Here, we investigated the glycosylation status and cellular localization of μ, CD79a, and CD79b chains in 10 CLL patients differing in surface immunoglobulin M (IgM) expression. We reported a severe impairment of the glycosylation and folding of μ and CD79a. These defects were associated with the retention of both chains in the endoplasmic reticulum and lower levels of surface IgM expression. In contrast, no clear impairment of glycosylation and folding was observed for CD79b. No sequence defects were identified for BCR components and for the chaperone proteins involved in BCR folding processes. These data show, for the first time, that lower levels of BCR surface expression observed in CLL are accounted for by an impaired glycosylation and folding of the μ and CD79a chains.


2000 ◽  
Vol 191 (10) ◽  
pp. 1735-1744 ◽  
Author(s):  
Urmila D. Bajpai ◽  
Keming Zhang ◽  
Mark Teutsch ◽  
Ranjan Sen ◽  
Henry H. Wortis

The recognition of antigen by membrane immunoglobulin M (mIgM) results in a complex series of signaling events in the cytoplasm leading to gene activation. Bruton's tyrosine kinase (BTK), a member of the Tec family of tyrosine kinases, is essential for the full repertoire of IgM signals to be transduced. We examined the ability of BTK to regulate the nuclear factor (NF)-κB/Rel family of transcription factors, as the activation of these factors is required for a B cell response to mIgM. We found greatly diminished IgM- but not CD40-mediated NF-κB/Rel nuclear translocation and DNA binding in B cells from X-linked immunodeficient (xid) mice that harbor an R28C mutation in btk, a mutation that produces a functionally inactive kinase. The defect was due, in part, to a failure to fully degrade the inhibitory protein of NF-κB, IκBα. Using a BTK-deficient variant of DT40 chicken B cells, we found that expression of wild-type or gain-of-function mutant BTK, but not the R28C mutant, reconstituted NF-κB activity. Thus, BTK is essential for activation of NF-κB via the B cell receptor.


1998 ◽  
Vol 20 (4) ◽  
pp. 383
Author(s):  
S. R. Rheingold ◽  
M. Jiang ◽  
S. A. Grupp ◽  
B. Himelstein

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 375-375 ◽  
Author(s):  
Fatima Talab ◽  
Victoria Thompson ◽  
John C Allen ◽  
Ke Lin ◽  
Joseph R Slupsky

Abstract Abstract 375 B cell receptor (BCR) signaling promotes survival of the malignant clone in chronic lymphocytic leukaemia (CLL) through its ability to stimulate NFkB pathway signaling. In lymphoid cells, antigen receptor stimulation of this pathway is achieved by engaging the Carma-1 – Bcl10 – MALT1 (CBM) complex for eventual activation of I-kB kinases (IKKs). In B cells, protein kinase C beta (PKCbeta) is an important mediator of CBM complex activation. However, in CLL cells we found that PKCs do not appear to have a role in BCR-mediated NFkB pathway signaling, despite high expression levels of PKCbeta, because the presence of specific inhibitors of this kinase (LY379196 and bisindolylmaleimide-I) has no effect on the induction of IKK phosphorylation during BCR crosslinking. Examination of CBM complex expression suggests an explanation for this phenomenon; the expression levels of Carma-1 and MALT-1 are largely similar in CLL and normal B cells, but the expression of Bcl10 is much reduced in CLL cells. These findings, taken together with the established role of Bcl10 in the pathway of BCR-induced NFkB activation, suggest that CLL cells may employ a different mechanism to activate this pathway during BCR stimulation. Tyrosine kinases are known to play a role in BCR-induced IKK activation in CLL cells because compounds like dasatinib and PP2 inhibit NFkB pathway activation by BCR. One possible tyrosine kinase is c-Abl because we have shown this protein to be overexpressed in CLL cells, where it plays a role in activation of the NFkB pathway. To investigate the role of c-Abl in BCR-induced IKK activation, we used the inhibitor imatinib and found that the presence of this compound partially inhibited IKK phosphorylation in BCR-stimulated CLL cells. However, imatinib can also inhibit Lck, a T cell-specific src-family tyrosine kinase that is expressed by CLL cells. To differentiate between Lck- and c-Abl-mediated BCR signals we used the specific inhibitor 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[3,2d] pyrimidin-7-yl-cyclopentane (Lck-i). We found that the presence of this compound in CLL cell cultures undergoing BCR stimulation almost completely inhibited the induction of IKK activation. Investigation of Lck-i specificity revealed this compound did not inhibit either c-Abl or Lyn at the concentration used to inhibit Lck in CLL cell cultures. Further investigation of the effects of Lck-i showed that this compound was also effective in inhibiting BCR-induced activation of the Akt and ERK signaling pathways. Taken together, these data suggest a major role for Lck in BCR-mediated signaling in CLL cells, and question the existing paradigm on the importance of Lyn. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document