scholarly journals Separation and properties of the 6-diastereoisomers of l-erythro-tetrahydrobiopterin and their reactivities with phenylalanine hydroxylase.

1978 ◽  
Vol 253 (5) ◽  
pp. 1598-1605
Author(s):  
S.W. Bailey ◽  
J.E. Ayling
1973 ◽  
Vol 248 (1) ◽  
pp. 223-232
Author(s):  
Donald F. Haggerty ◽  
Peggy L. Young ◽  
G. Popják ◽  
William H. Carnes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oscar Aubi ◽  
Karina S. Prestegård ◽  
Kunwar Jung-KC ◽  
Tie-Jun Sten Shi ◽  
Ming Ying ◽  
...  

AbstractPhenylketonuria (PKU) is caused by autosomal recessive variants in phenylalanine hydroxylase (PAH), leading to systemic accumulation of L-phenylalanine (L-Phe) that may reach neurotoxic levels. A homozygous Pah-R261Q mouse, with a highly prevalent misfolding variant in humans, reveals the expected hepatic PAH activity decrease, systemic L-Phe increase, L-tyrosine and L-tryptophan decrease, and tetrahydrobiopterin-responsive hyperphenylalaninemia. Pah-R261Q mice also present unexpected traits, including altered lipid metabolism, reduction of liver tetrahydrobiopterin content, and a metabolic profile indicative of oxidative stress. Pah-R261Q hepatic tissue exhibits large ubiquitin-positive, amyloid-like oligomeric aggregates of mutant PAH that colocalize with selective autophagy markers. Together, these findings reveal that PKU, customarily considered a loss-of-function disorder, can also have toxic gain-of-function contribution from protein misfolding and aggregation. The proteostasis defect and concomitant oxidative stress may explain the prevalence of comorbid conditions in adult PKU patients, placing this mouse model in an advantageous position for the discovery of mutation-specific biomarkers and therapies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xin Wang ◽  
Yanyun Wang ◽  
Dingyuan Ma ◽  
Zhilei Zhang ◽  
Yahong Li ◽  
...  

Abstract Background Hyperphenylalaninemia (HPA) is the most common amino acid metabolic disease involving phenylalanine hydroxylase (PAH, OMIM*612,349) deficiency or coenzyme tetrahydrobiopterin (BH4) deficiency. Patients with severe HPA often have a difficult life. Early diagnosis of HPA before the development of symptoms is possible via neonatal screening, facilitating appropriate treatment and reducing mortality and disability rates. This study revealed the prevalence, mutational and phenotypic spectrum, and prognosis of HPA by neonatal screening from January 2001 to September 2020 in Nanjing, Jiangsu Province, China. Methods Through a retrospective analysis of the information available in the neonatal screening database, the clinical presentations, laboratory data, molecular characteristics and treatment follow-up data of HPA patients detected by neonatal screening were evaluated. Results We diagnosed 181 patients with HPA from 1 to 957 newborns, giving an incidence of 1:6873. Among these patients, 177 were identified as PAH deficient and four patients were BH4 deficient. The average current age of the patients was 6.38 years old. The most common mutations of PAH were c.728 C > A/ p.Arg243Gln (13.83 %), c.158G > A/ p.Arg53His (9.57 %), c.611 A > G/ p.Tyr204Cys (7.44 %), and c.721 C > T/ p.Arg241Cys (6.38 %). Conclusions This study revealed the prevalence, phenotype-genotype, and prognosis of HPA in China and contributes to the updating of PAHD data for China and worldwide. Our study not only expanded the spectrum of phenotypes and genotype but also provided a valuable tool for improved genetic counseling and management of future cases.


Sign in / Sign up

Export Citation Format

Share Document