scholarly journals Effects of insulin and protein synthesis inhibitors on phospholipid metabolism, diacylglycerol levels, and pyruvate dehydrogenase activity in BC3H-1 cultured myocytes.

1984 ◽  
Vol 259 (11) ◽  
pp. 7094-7100 ◽  
Author(s):  
R V Farese ◽  
D E Barnes ◽  
J S Davis ◽  
M L Standaert ◽  
R J Pollet
Diabetes ◽  
1985 ◽  
Vol 34 (11) ◽  
pp. 1075-1081 ◽  
Author(s):  
T. H. Kuo ◽  
F. Giacomelli ◽  
J. Wiener ◽  
K. Lapanowski-Netzel

Cell Reports ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 108935
Author(s):  
Keshav Gopal ◽  
Rami Al Batran ◽  
Tariq R. Altamimi ◽  
Amanda A. Greenwell ◽  
Christina T. Saed ◽  
...  

Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S622-S623
Author(s):  
Alisa W Serio ◽  
S Ken Tanaka ◽  
Kelly Wright ◽  
Lynne Garrity-Ryan

Abstract Background In animal models of Staphylococcus aureus infection, α-hemolysin has been shown to be a key virulence factor. Treatment of S. aureus with subinhibitory levels of protein synthesis inhibitors can decrease α-hemolysin expression. Omadacycline, a novel aminomethylcycline antibiotic in the tetracycline class of bacterial protein biosynthesis inhibitors, is approved in the United States for treatment of community-acquired bacterial pneumonia (CABP) and acute bacterial skin and skin structure infections (ABSSSI) in adults. This study was performed to determine the durability of inhibition and effect of subinhibitory concentrations of omadacycline on S. aureus hemolytic activity. Methods All experiments used the methicillin-sensitive S. aureus strain Wood 46 (ATCC 10832), a laboratory strain known to secrete high levels of α-hemolysin. Minimum inhibitory concentrations (MICs) of omadacycline and comparator antibiotics (tetracycline, cephalothin, clindamycin, vancomycin, linezolid) were determined. Growth of S. aureus with all antibiotics was determined and the percentage of hemolysis assayed. “Washout” experiments were performed with omadacycline only. Results S. aureus cultures treated with 1/2 or 1/4 the MIC of omadacycline for 4 hours showed hemolysis units/108 CFU of 47% and 59% of vehicle-treated cultures, respectively (Fig. 1A, 1B). In washout experiments, treatment with as little as 1/4 the MIC of omadacycline for 1 hour decreased the hemolysis units/108 CFU by 60% for 4 hours following removal of the drug (Table 1). Figure 1 Table 1 Conclusion Omadacycline inhibited S. aureus hemolytic activity in vitro at subinhibitory concentrations and inhibition was maintained for ≥ 4 hours after removal of extracellular drug (Fig. 2). The suppression of virulence factors throughout the approved omadacycline dosing interval, in addition to the in vitro potency of omadacycline, may contribute to the efficacy of omadacycline for ABSSSI and CABP due to virulent S. aureus. This finding may apply to other organisms and other virulence factors that require new protein synthesis to establish disease. Figure 2 Disclosures Alisa W. Serio, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) S. Ken Tanaka, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) Kelly Wright, PharmD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder) Lynne Garrity-Ryan, PhD, Paratek Pharmaceuticals, Inc. (Employee, Shareholder)


1991 ◽  
Vol 261 (6) ◽  
pp. C1162-C1172 ◽  
Author(s):  
E. Page ◽  
J. Upshaw-Earley ◽  
G. E. Goings ◽  
D. A. Hanck

We have used a noncontracting in vitro preparation of stretched and unstretched rat atria to estimate contributions of constitutive and regulated pathways to the rates of stretch-augmented and basal secretion of immunoreactive atrial natriuretic peptide (ANP) and to examine effects of inhibition of the secretory sequence by 1) protein synthesis inhibitors, 2) disruption of forward vesicular traffic between endoplasmic reticulum and Golgi with brefeldin A (BFA, and 3) cellular ATP depletion. Protein synthesis inhibition with cycloheximide for 44 min slowed neither basal nor stretch-augmented ANP secretion but instead accelerated stretch-augmented secretion at low (but not at physiological) external Ca2+ concentration, suggesting that the constitutive component does not contribute substantially to either basal or stretch-augmented secretion. BFA, which disassembled Golgi cisternae, increased the stretch-augmented secretory rate via the regulated pathway and prevented Ca(2+)-dependent inactivation with time. Cellular ATP depletion rapidly and completely inhibited stretch-augmented secretion. We conclude that both basal and stretch-augmented utilize the energy-dependent regulated pathway, drawing on a large reservoir of concentrated prohormone stored in granules that is not detectably depleted during 44 min of stretch-augmented secretion at 37 degrees C.


2002 ◽  
Vol 66 (4) ◽  
pp. 835-839 ◽  
Author(s):  
Ai KAGEYAMA ◽  
Izumi KUSANO ◽  
Tadashi TAMURA ◽  
Tatsuya ODA ◽  
Tsuyoshi MURAMATSU

Sign in / Sign up

Export Citation Format

Share Document