scholarly journals Tetanus toxin interactions with thyroid plasma membranes. Implications for structure and function of tetanus toxin receptors and potential pathophysiological significance.

1977 ◽  
Vol 252 (12) ◽  
pp. 4049-4055 ◽  
Author(s):  
F D Ledley ◽  
G Lee ◽  
L D Kohn ◽  
W H Habig ◽  
M C Hardegree
1968 ◽  
Vol 52 (1) ◽  
pp. 257-278 ◽  
Author(s):  
Edward D. Korn

The paucimolecular unit membrane model of the structure of the plasma membrane is critically reviewed in relation to current knowledge of the chemical and enzymatic composition of isolated plasma membranes, the properties of phospholipids, the chemistry of fixation for electron microscopy, the conformation of membrane proteins, the nature of the lipid-protein bonds in membranes, and possible mechanisms of transmembrane transport and membrane biosynthesis. It is concluded that the classical models, although not disproven, are not well supported by, and are difficult to reconcile with, the data now available. On the other hand, although a model based on lipoprotein subunits is, from a biochemical perspective, an attractive alternative, it too is far from proven. Many of the questions may be resolved by studies of membrane function and membrane biosynthesis rather than by a direct attack on membrane structure.


Physiology ◽  
1998 ◽  
Vol 13 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Hermann Koepsell ◽  
Andreas Busch ◽  
Valentin Gorboulev ◽  
Petra Arndt

Polyspecific transport systems in the kidney mediate the excretion and reabsorption of organic cations. Electrogenic import systems and electroneutral export systems in the basolateral and luminal plasma membranes of proximal renal tubules are involved. Two subtypes of electrogenic import systems have been cloned from rats and humans and functionally characterized.


1982 ◽  
Vol 60 (9) ◽  
pp. 1171-1176 ◽  
Author(s):  
Hung Lee ◽  
E. A. Hosein

The effect of chronic alcohol administration on the structure and function of the rat liver plasma membranes has been investigated. Chronic alcohol administration did not affect the yield of these membranes using conventional isolation procedures. The extent of plasma membrane enrichment or contamination with other interior membranes was identical in the control and alcoholic preparations. The binding of 125I-labelled glucagon to these experimental liver plasma membranes was significantly decreased. Scatchard analysis of the high affinity sites showed a significant reduction [Formula: see text] in receptor number rather than binding affinity, which was not altered. This anomaly persisted through 72-h withdrawal of alcohol. These data suggest that very stable changes were induced in these liver plasma membranes after prolonged alcohol ingestion.


2000 ◽  
Vol 278 (1) ◽  
pp. F13-F28 ◽  
Author(s):  
A. S. Verkman ◽  
Alok K. Mitra

The aquaporins (AQPs) are a family of small membrane-spanning proteins (monomer size ∼30 kDa) that are expressed at plasma membranes in many cells types involved in fluid transport. This review is focused on the molecular structure and function of mammalian aquaporins. Basic features of aquaporin structure have been defined using mutagenesis, epitope tagging, and spectroscopic and freeze-fracture electron microscopy methods. Aquaporins appear to assemble in membranes as homotetramers in which each monomer, consisting of six membrane-spanning α-helical domains with cytoplasmically oriented amino and carboxy termini, contains a distinct water pore. Medium-resolution structural analysis by electron cryocrystallography indicated that the six tilted helical segments form a barrel surrounding a central pore-like region that contains additional protein density. Several of the mammalian aquaporins (e.g., AQP1, AQP2, AQP4, and AQP5) appear to be highly selective for the passage of water, whereas others (recently termed aquaglyceroporins) also transport glycerol (e.g., AQP3 and AQP8) and even larger solutes (AQP9). Evidence for possible movement of ions and carbon dioxide through the aquaporins is reviewed here, as well as evidence for direct regulation of aquaporin function by posttranslational modification such as phosphorylation. Important unresolved issues include definition of the molecular pathway through which water and solutes move, the nature of monomer-monomer interactions, and the physiological significance of aquaporin-mediated solute movement. Recent results from knockout mice implicating multiple physiological roles of aquaporins suggest that the aquaporins may be suitable targets for drug discovery by structure-based and/or high-throughput screening strategies.


1983 ◽  
Vol 42 (3) ◽  
pp. 942-948 ◽  
Author(s):  
J G Kenimer ◽  
W H Habig ◽  
M C Hardegree

Sign in / Sign up

Export Citation Format

Share Document