scholarly journals Protein synthesis eukaryotic initiation factors 4A and 4B are not altered by poliovirus infection of HeLa cells.

1983 ◽  
Vol 258 (11) ◽  
pp. 7236-7239 ◽  
Author(s):  
R Duncan ◽  
D Etchison ◽  
J W Hershey
2000 ◽  
Vol 88 (3) ◽  
pp. 1036-1042 ◽  
Author(s):  
Peter A. Farrell ◽  
Jazmir M. Hernandez ◽  
Mark J. Fedele ◽  
Thomas C. Vary ◽  
Scot R. Kimball ◽  
...  

Translational control of protein synthesis depends on numerous eukaryotic initiation factors (eIFs) and we have previously shown ( Am. J. Physiol. Endocrinol. Metab. 276: E721–E727, 1999) that increases in one factor, eIF2B, are associated with increases in rates of protein synthesis after resistance exercise in rats. In the present study we investigated whether the eIF4E family of initiation factors is also involved with an anabolic response to exercise. Male Sprague-Dawley rats either remained sedentary ( n = 6) or performed acute resistance exercise ( n = 6), and rates of protein synthesis were assessed in vivo 16 h after the last session of resistance exercise. eIF4E complexed to eIF4G (eIF4E ⋅ eIF4G), eIF4E binding protein 1 (4E-BP1) complexed to eIF4E, and phosphorylation state of eIF4E and 4E-BP1 (γ-form) were assessed in gastrocnemius. Rates of protein synthesis were higher in exercised rats compared with sedentary rats [205 ± 8 (SE) vs. 164 ± 5.5 nmol phenylalanine incorporated ⋅ g muscle−1 ⋅ h−1, respectively; P < 0.05]. Arterial plasma insulin concentrations were not different between the two groups. A trend ( P = 0.09) for an increase in eIF4E ⋅ eIF4G with exercise was noted; however, no statistically significant differences were observed in any of the components of the eIF4E family in response to resistance exercise. These new data, along with our previous report on eIF2B, suggest that the regulation of peptide chain initiation after exercise is more dependent on eIF2B than on the eIF4E system.


Biochemistry ◽  
1982 ◽  
Vol 21 (18) ◽  
pp. 4202-4206 ◽  
Author(s):  
Marianne L. Brown-Luedi ◽  
Laurence J. Meyer ◽  
Susan C. Milburn ◽  
Peter Mo Ping Yau ◽  
Susan Corbett ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Divya Khandige Sharma ◽  
Kamiko Bressler ◽  
Harshil Patel ◽  
Nirujah Balasingam ◽  
Nehal Thakor

Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.


1999 ◽  
Vol 277 (6) ◽  
pp. E1077-E1086 ◽  
Author(s):  
Thomas C. Vary ◽  
Leonard S. Jefferson ◽  
Scot R. Kimball

Amino acids stimulate protein synthesis in skeletal muscle by accelerating translation initiation. In the two studies described herein, we examined mechanisms by which amino acids regulate translation initiation in perfused skeletal muscle hindlimb preparation of rats. In the first study, the effects of supraphysiological amino acid concentrations on eukaryotic initiation factors (eIF) 2B and 4E were compared with physiological concentrations of amino acids. Amino acid supplementation stimulated protein synthesis twofold. No changes were observed in eIF2B activity, in the amount of eIF4E associated with the eIF4E-binding protein (4E-BP1), or in the phosphorylation of 4E-BP1. The abundance of eIF4E bound to eIF4G and the extent of phosphorylation of eIF4E were increased by 800 and 20%, respectively. In the second study, we examined the effect of removing leucine on translation initiation when all other amino acids were maintained at supraphysiological concentrations. Removal of leucine from the perfusate decreased the rate of protein synthesis by 40%. The inhibition of protein synthesis was associated with a 40% decrease in eIF2B activity and an 80% fall in the abundance of eIF4E ⋅ eIF4G complex. The fall in eIF4G binding to eIF4E was associated with increased 4E-BP1 bound to eIF4E and a reduced phosphorylation of 4E-BP1. In contrast, the extent of phosphorylation of eIF4E was unaffected. We conclude that formation of the active eIF4E ⋅ eIF4G complex controls protein synthesis in skeletal muscle when the amino acid concentration is above the physiological range, whereas removal of leucine reduces protein synthesis through changes in both eIF2B and eIF4E.


1987 ◽  
Vol 7 (3) ◽  
pp. 1293-1295 ◽  
Author(s):  
R F Duncan ◽  
J W Hershey

The protein covalent modification state of eucaryotic initiation factors eIF-2 and eIF-4B in HeLa cells was examined after they were exposed to a variety of conditions or treatments that regulate protein synthesis. A few factors (e.g., variant pH and sodium fluoride) altered the phosphorylation state of the initiation factor proteins, but the majority (hypertonic medium, ethanol, dimethyl sulfoxide sodium selenite, sodium azide, and colchicine) had no effect on either protein. While initiation factor phosphorylation may regulate protein synthesis in response to many physiological situations, other pathways can regulate protein synthesis under nonphysiological circumstances.


2000 ◽  
Vol 278 (6) ◽  
pp. E1133-E1143 ◽  
Author(s):  
Charles H. Lang ◽  
Robert A. Frost ◽  
Leonard S. Jefferson ◽  
Scot R. Kimball ◽  
Thomas C. Vary

The present study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle after administration of endotoxin (LPS). Rats implanted with vascular catheters were injected intravenously with a nonlethal dose of Escherichia coli LPS, and samples were collected at 4 and 24 h thereafter; pair-fed control animals were also included. The rate of muscle (gastrocnemius) protein synthesis in vivo was reduced at both time points after LPS administration. LPS did not alter tissue RNA content, but the translational efficiency was consistently reduced at both time points. To identify mechanisms responsible for regulating translation, we examined several eukaryotic initiation factors (eIFs). The content of eIF2α or the amount of eIF2α in the phosphorylated form did not change in response to LPS. eIF2B activity was decreased in muscle 4 h post-LPS but activity returned to control values by 24 h. A decrease in the relative amount of eIF2Bα protein was not responsible for the LPS-induced reduction in eIF2B activity. LPS also markedly altered the distribution of eIF4E in muscle. Compared with control values, LPS-treated rats demonstrated 1) a transient increase in binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF4E, 2) a transient decrease in the phosphorylated γ-form of 4E-BP1, and 3) a sustained decrease in the amount of eIF4G associated with eIF4E. LPS also decreased insulin-like growth factor (IGF) I protein and mRNA expression in muscle at both times. A significant linear relationship existed between muscle IGF-I and the rate of protein synthesis or the amount of eIF4E bound to eIF4G. In summary, these data suggest that LPS impairs muscle protein synthesis, at least in part, by decreasing translational efficiency, resulting from an impairment in translation initiation associated with alterations in both eIF2B activity and eIF4E availability.


Sign in / Sign up

Export Citation Format

Share Document