scholarly journals Defective folding and stable association with protein disulfide isomerase/prolyl hydroxylase of type I procollagen with a deletion in the pro alpha 2(I) chain that preserves the Gly-X-Y repeat pattern.

1992 ◽  
Vol 267 (11) ◽  
pp. 7751-7757
Author(s):  
S.D. Chessler ◽  
P.H. Byers
Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Haniel A Araujo ◽  
Leonardo Y Tanaka ◽  
Gustavo K Hironaka ◽  
Thais L Araujo ◽  
Celso K Takimura ◽  
...  

INTRODUCTION: Vascular remodeling orchestrates a complex network of signaling pathways responsible for pathological changes in many vascular diseases such as atherosclerosis. We investigated the role of endoplasmic reticulum chaperone Protein Disulfide Isomerase (PDI) and the extracellular PDI (ecPDI) pool in vascular caliber and architecture during vascular repair and remodeling after injury (AI). METHODS AND RESULTS: After rabbit iliac artery balloon injury, PDI is markedly increased at mRNA and protein levels (25-fold vs. basal 14 days AI), with increase in both intracellular and ecPDI. Silencing PDI by siRNA in vitro induced ER stress markers upregulation and apoptosis (assessed by TUNEL assay). PDI knockdown also upregulated proliferation marker PCNA and decreased differentiation marker calponin-C. Furthermore, ecPDI inhibition prevents injury-increased hydrogen peroxide generation and decreases arterial nitrate (NO3-) level. EcPDI neutralization in vivo with PDIAb-containing perivascular gel from days 12-14AI promoted 25% decrease in vascular caliber at arteriography and similar decreases in total vessel circumference at optical coherence tomography, without changing neointima, indicating increased constrictive remodeling. EcPDI neutralization promoted striking changes in collagen, with switch from circumferential to radial fiber orientation towards a more rigid fiber type. Collagen type I and III were decreased after ecPDI inhibition in arteries 14 days AI. Cytoskeleton architecture was also disrupted, with loss of stress fiber coherent organization and switch from thin to medium-thickness actin fibers. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling. There was decreased PDI expression in media and intima from plaques exhibiting constrictive remodeling and, conversely, enhanced PDI expression in media of plaques depicting outward remodeling. CONCLUSIONS: Thus, PDI is highly upregulated after injury and reshapes matrix and cytoskeleton architecture to support an anticonstrictive remodeling effect. Such findings suggest an important role for PDI in lumen maintenance during vascular remodeling.


2009 ◽  
Vol 425 (1) ◽  
pp. 195-208 ◽  
Author(s):  
Doris Roth ◽  
Emily Lynes ◽  
Jan Riemer ◽  
Henning G. Hansen ◽  
Nils Althaus ◽  
...  

The thiol-disulfide oxidoreductases of the PDI (protein disulfide isomerase) family assist in disulfide-bond formation in the ER (endoplasmic reticulum). In the present study, we have shown that the previously uncharacterized PDI family member TMX4 (thioredoxin-like transmembrane 4) is an N-glycosylated type I membrane protein that localizes to the ER. We also demonstrate that TMX4 contains a single ER-luminal thioredoxin-like domain, which, in contrast with similar domains in other PDIs, is mainly oxidized in living cells. The TMX4 transcript displays a wide tissue distribution, and is strongly expressed in melanoma cells. Unlike many type I membrane proteins, TMX4 lacks a typical C-terminal di-lysine retrieval signal. Instead, the cytoplasmic tail has a conserved di-arginine motif of the RXR type. We show that mutation of the RQR sequence in TMX4 to KQK interferes with ER localization of the protein. Moreover, whereas the cytoplasmic region of TMX4 confers ER localization to a reporter protein, the KQK mutant of the same protein redistributes to the cell surface. Overall, features not commonly found in other PDIs characterize TMX4 and suggest unique functional properties of the protein.


1989 ◽  
Vol 162 (2) ◽  
pp. 857-868 ◽  
Author(s):  
Christian H.H. Schoenmakers ◽  
Ingrid G.A.J. Pigmans ◽  
Hilary C. Hawkins ◽  
Robert B. Freedman ◽  
Theo J. Visser

Sign in / Sign up

Export Citation Format

Share Document