scholarly journals Biosynthesis of the plasma membrane H+-ATPase of Neurospora crassa.

1988 ◽  
Vol 263 (28) ◽  
pp. 14552-14558 ◽  
Author(s):  
L R Aaronson ◽  
K M Hager ◽  
J W Davenport ◽  
S M Mandala ◽  
A Chang ◽  
...  
1994 ◽  
Vol 269 (26) ◽  
pp. 17705-17712
Author(s):  
S.K. Mahanty ◽  
U.S. Rao ◽  
R.A. Nicholas ◽  
G.A. Scarborough

2016 ◽  
Vol 12 (2) ◽  
pp. 391-403 ◽  
Author(s):  
Federico Lopez-Moya ◽  
David Kowbel ◽  
Ma José Nueda ◽  
Javier Palma-Guerrero ◽  
N. Louise Glass ◽  
...  

In this work we performed the first transcriptional study of a filamentous fungus (N. crassa) in response to chitosan.


1981 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M L Pall ◽  
J M Trevillyan ◽  
N Hinman

Strains of Neurospora crassa mutant in either of two genes, Crisp-1 (cr1) and Frost (fr), showed no increase of cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels when subjected to several treatments which produce large increases of cyclic AMP in wild-type Neurospora. Evidently, the previously reported deficiencies of adenylate cyclase in these mutants were sufficient to block the normal increases. This fact suggests that both mutants could be used to help determine which control phenomena involve cyclic AMP and to interrupt the control of established cyclic AMP-regulated functions. Earlier studies had suggested an interdependence of the cyclic AMP level and the electric potential difference across the plasma membrane of Neurospora. Present experiments, therefore, employed several strains with the cr1 mutation to test for possible roles of cyclic AMP in recovery and oscillatory behavior of the Neurospora membrane potential. The results showed all such phenomena to be normal in the adenylate cyclase-defective strains, which demonstrates that variations of cyclic AMP are not obligatorily involved in the apparent control processes. Evidence is also presented that the induction of both glucose transport system II and the alternative oxidase do not require elevated cyclic AMP levels.


2014 ◽  
Vol 25 (8) ◽  
pp. 1312-1326 ◽  
Author(s):  
Meritxell Riquelme ◽  
Erin L. Bredeweg ◽  
Olga Callejas-Negrete ◽  
Robert W. Roberson ◽  
Sarah Ludwig ◽  
...  

Fungal hyphae are among the most highly polarized cells. Hyphal polarized growth is supported by tip-directed transport of secretory vesicles, which accumulate temporarily in a stratified manner in an apical vesicle cluster, the Spitzenkörper. The exocyst complex is required for tethering of secretory vesicles to the apical plasma membrane. We determined that the presence of an octameric exocyst complex is required for the formation of a functional Spitzenkörper and maintenance of regular hyphal growth in Neurospora crassa. Two distinct localization patterns of exocyst subunits at the hyphal tip suggest the dynamic formation of two assemblies. The EXO-70/EXO-84 subunits are found at the peripheral part of the Spitzenkörper, which partially coincides with the outer macrovesicular layer, whereas exocyst components SEC-5, -6, -8, and -15 form a delimited crescent at the apical plasma membrane. Localization of SEC-6 and EXO-70 to the plasma membrane and the Spitzenkörper, respectively, depends on actin and microtubule cytoskeletons. The apical region of exocyst-mediated vesicle fusion, elucidated by the plasma membrane–associated exocyst subunits, indicates the presence of an exocytotic gradient with a tip-high maximum that dissipates gradually toward the subapex, confirming the earlier predictions of the vesicle supply center model for hyphal morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document