scholarly journals Effects of Diabetes, Fatty Acids, and Ketone Bodies on Tricarboxylic Acid Cycle Metabolism in the Perfused Rat Heart

1966 ◽  
Vol 241 (13) ◽  
pp. 3041-3048
Author(s):  
Roger H. Bowman
1986 ◽  
Vol 239 (1) ◽  
pp. 121-125 ◽  
Author(s):  
P Newsholme ◽  
R Curi ◽  
S Gordon ◽  
E A Newsholme

Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by ‘resting’ macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.


1987 ◽  
Vol 243 (3) ◽  
pp. 853-857 ◽  
Author(s):  
K E Sundqvist ◽  
J Heikkilä ◽  
I E Hassinen ◽  
J K Hiltunen

Cytosolic and mitochondrial concentrations of malate, 2-oxoglutarate, isocitrate and pyruvate in the isolated perfused rat heart were measured by non-aqueous tissue fractionation, taking the NADP-linked isocitrate dehydrogenase as indicator reactions for the free [NADPH]/[NADP+] ratios. The mass-action ratios of NADP-linked malic enzymes (EC 1.1.1.40) were found to be on the side of pyruvate carboxylation by more than one order of magnitude in both the cytosolic and the mitochondrial spaces in hearts perfused with glucose, whereas during propionate perfusion this ratio approached the equilibrium constant (Keq.) of malic enzyme. The results consequently indicate that the NADP-linked malic enzymes cannot be responsible for the feed-out (cataplerotic) reactions from the tricarboxylic acid cycle which occur during glucose perfusion. Only when other anaplerotic fluxes into the cycle are high, as during propionate oxidation, which results in accumulation of tricarboxylic acid-cycle intermediates, is a steady state reached which allows efflux via the malic enzyme.


1979 ◽  
Vol 237 (3) ◽  
pp. R159-R166 ◽  
Author(s):  
M. C. Kohn ◽  
M. J. Achs ◽  
D. Garfinkel

A realistic metabolic model of the tricarboxylic acid cycle in the perfused rat heart was constructed to help explain the sequence of biochemical events regulating the metabolism of exogenous pyruvate following a large increase in work load. The unchelated Mg2+ level was the most important controlling factor. The resulting mixture of chelated and unchelated nucleotides and tribasic acids effected coordinated control of citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA synthetase, fumarase, and nucleoside diphosphokinase, because Mg2+-chelates are generally substrates whereas unchelated species are inhibitors. Succinate dehydrogenase is largely controlled by the ubiquinone redox potential. The fluxes through alpha-ketoglutarate and malate dehydrogenases are largely dependent on thepyridine nucleotide redox potential, but the succinyl CoA-to-CoASH ratio strongly affects the former enzyme as well. The model predicts an accumulation of succinate during the transition to higher work output.


1982 ◽  
Vol 208 (3) ◽  
pp. 743-748 ◽  
Author(s):  
M. Salleh M. Ardawi ◽  
Eric A. Newsholme

1. The maximum activity of hexokinase in lymphocytes is similar to that of 6-phosphofructokinase, but considerably greater than that of phosphorylase, suggesting that glucose rather than glycogen is the major carbohydrate fuel for these cells. Starvation increased slightly the activities of some of the glycolytic enzymes. A local immunological challenge in vivo (a graft-versus-host reaction) increased the activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and lactate dehydrogenase, confirming the importance of the glycolytic pathway in cell division. 2. The activities of the ketone-body-utilizing enzymes were lower than those of hexokinase or 6-phosphofructokinase, unlike in muscle and brain, and were not affected by starvation. It is suggested that the ketone bodies will not provide a quantitatively important alternative fuel to glucose in lymphocytes. 3. Of the enzymes of the tricarboxylic acid cycle whose activities were measured, that of oxoglutarate dehydrogenase was the lowest, yet its activity (about 4.0μmol/min per g dry wt. at 37°C) was considerably greater than the flux through the cycle (0.5μmol/min per g calculated from oxygen consumption by incubated lymphocytes). The activity was decreased by starvation, but that of citrate synthase was increased by the local immunological challenge in vivo. It is suggested that the rate of the cycle would increase towards the capacity indicated by oxoglutarate dehydrogenase in proliferating lymphocytes. 4. Enzymes possibly involved in the pathway of glutamine oxidation were measured in lymphocytes, which suggests that an aminotransferase reaction(s) (probably aspartate aminotransferase) is important in the conversion of glutamate into oxoglutarate rather than glutamate dehydrogenase, and that the maximum activity of glutaminase is markedly in excess of the rate of glutamine utilization by incubated lymphocytes. The activity of glutaminase is increased by both starvation and the local immunological challenge in vivo. This last finding suggests that metabolism of glutamine via glutaminase is important in proliferating lymphocytes.


1996 ◽  
Vol 317 (3) ◽  
pp. 791-795 ◽  
Author(s):  
Lesley DRYNAN ◽  
Patti A. QUANT ◽  
Victor A. ZAMMIT

The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of β-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved–refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313–317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486–490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall β-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed.


Sign in / Sign up

Export Citation Format

Share Document