scholarly journals Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat

1982 ◽  
Vol 208 (3) ◽  
pp. 743-748 ◽  
Author(s):  
M. Salleh M. Ardawi ◽  
Eric A. Newsholme

1. The maximum activity of hexokinase in lymphocytes is similar to that of 6-phosphofructokinase, but considerably greater than that of phosphorylase, suggesting that glucose rather than glycogen is the major carbohydrate fuel for these cells. Starvation increased slightly the activities of some of the glycolytic enzymes. A local immunological challenge in vivo (a graft-versus-host reaction) increased the activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and lactate dehydrogenase, confirming the importance of the glycolytic pathway in cell division. 2. The activities of the ketone-body-utilizing enzymes were lower than those of hexokinase or 6-phosphofructokinase, unlike in muscle and brain, and were not affected by starvation. It is suggested that the ketone bodies will not provide a quantitatively important alternative fuel to glucose in lymphocytes. 3. Of the enzymes of the tricarboxylic acid cycle whose activities were measured, that of oxoglutarate dehydrogenase was the lowest, yet its activity (about 4.0μmol/min per g dry wt. at 37°C) was considerably greater than the flux through the cycle (0.5μmol/min per g calculated from oxygen consumption by incubated lymphocytes). The activity was decreased by starvation, but that of citrate synthase was increased by the local immunological challenge in vivo. It is suggested that the rate of the cycle would increase towards the capacity indicated by oxoglutarate dehydrogenase in proliferating lymphocytes. 4. Enzymes possibly involved in the pathway of glutamine oxidation were measured in lymphocytes, which suggests that an aminotransferase reaction(s) (probably aspartate aminotransferase) is important in the conversion of glutamate into oxoglutarate rather than glutamate dehydrogenase, and that the maximum activity of glutaminase is markedly in excess of the rate of glutamine utilization by incubated lymphocytes. The activity of glutaminase is increased by both starvation and the local immunological challenge in vivo. This last finding suggests that metabolism of glutamine via glutaminase is important in proliferating lymphocytes.

1986 ◽  
Vol 239 (1) ◽  
pp. 121-125 ◽  
Author(s):  
P Newsholme ◽  
R Curi ◽  
S Gordon ◽  
E A Newsholme

Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by ‘resting’ macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.


1977 ◽  
Vol 164 (2) ◽  
pp. 349-355 ◽  
Author(s):  
G Read ◽  
B Crabtree ◽  
G H Smith

1. The activities of 2-oxoglutarate dehydrogenase (EC 1.2.4.2) were measured in hearts and mammary glands of rats, mice, rabbits, guinea pigs, cows, sheep, goats and in the flight muscles of several Hymenoptera. 2. The activity of 2-oxoglutarate dehydrogenase was similar to the maximum flux through the tricarboxylic acid cycle in vivo. Therefore measuring the activity of this enzyme may provide a simple method for estimating the maximum flux through the cycle for comparative investigations. 3. The activities of pyruvate dehydrogenase (EC 1.2.4.1) in mammalian hearts were similar to those of 2-oxoglutarate dehydrogenase, suggesting that in these tissues the tricarboxylic acid cycle can be supplied (under some conditions) by acetyl-CoA derived from pyruvate alone. 4. In the lactating mammary glands of the rat and mouse, the activities of pyruvate dehydrogenase exceeded those of 2-oxoglutarate dehydrogenase, reflecting a flux of pyruvate to acetyl-CoA for fatty acid synthesis in addition to that of oxidation via the tricarboxylic acid cycle. In ruminant mammary glands the activities of pyruvate dehydrogenase were similar to those of 2-oxoglutarate dehydrogenase, reflecting the absence of a significant flux of pyruvate to fatty acids in these tissues.


1981 ◽  
Vol 200 (3) ◽  
pp. 701-703 ◽  
Author(s):  
G J Cooney ◽  
H Taegtmeyer ◽  
E A Newsholme

Flux through the tricarboxylic acid cycle was calculated from oxygen consumption in hearts perfused near the physiological work load. Activities of citrate synthase, 2-oxoglutarate dehydrogenase and succinate dehydrogenase were measured in the same hearts. Only the activities of 2-oxoglutarate dehydrogenase correlated with calculated fluxes through the cycle.


1976 ◽  
Vol 153 (2) ◽  
pp. 173-179 ◽  
Author(s):  
M Swissa ◽  
M Benziman

The citrate synthase activity of Acetobacter xylinum cells grown on glucose was the same as of cells grown on intermediates of the tricarboxylic acid cycle. The activity of citrate synthase in extracts is compatible with the overall rate of acetate oxidation in vivo. The enzyme was purified 47-fold from sonic extracts and its molecular weight was determined to be 280000 by gel filtration. It has an optimum activity at pH 8.4. Reaction rates with the purified enzyme were hyperbolic functions of both acetyl-CoA and oxaloacetate. The Km for acetyl-CoA is 18 μm and that for oxaloacetate 8.7 μm. The enzyme is inhibited by ATP according to classical kinetic patterns. This inhibition is competitive with respect to acetyl-CoA (Ki = 0.9 mM) and non-competitive with respect to oxaloacetate. It is not affected by changes in pH and ionic strength and is not relieved by an excess of Mg2+ ions. Unlike other Gram-negative bacteria, the A. xylinum enzyme is not inhibited by NADH, but is inhibited by high concentrations of NADPH. The activity of the enzyme varies with energy charge in a manner consistent with its role in energy metabolism. It is suggested that the flux through the tricarboxylic acid cycle in A. xylinum is regulated by modulation of citrate synthase activity in response to the energy state of the cells.


1986 ◽  
Vol 6 (6) ◽  
pp. 1936-1942
Author(s):  
K S Kim ◽  
M S Rosenkrantz ◽  
L Guarente

The tricarboxylic acid cycle occurs within the mitochondria of the yeast Saccharomyces cerevisiae. A nuclear gene encoding the tricarboxylic acid cycle enzyme citrate synthase has previously been isolated (M. Suissa, K. Suda, and G. Schatz, EMBO J. 3:1773-1781, 1984) and is referred to here as CIT1. We report here the isolation, by an immunological method, of a second nuclear gene encoding citrate synthase (CIT2). Disruption of both genes in the yeast genome was necessary to produce classical citrate synthase-deficient phenotypes: glutamate auxotrophy and poor growth on rich medium containing lactate, a nonfermentable carbon source. Therefore, the citrate synthase produced from either gene was sufficient for these metabolic roles. Transcription of both genes was maximally repressed in medium containing both glucose and glutamate. However, transcription of CIT1 but not of CIT2 was derepressed in medium containing a nonfermentable carbon source. The significance of the presence of two genes encoding citrate synthase in S. cerevisiae is discussed.


1967 ◽  
Vol 15 (4) ◽  
pp. 202-206
Author(s):  
C. JAMES LOVELACE ◽  
GENE W. MILLER

In vivo effects of fluoride on tricarboxylic acid (TCA) cycle dehydrogenase enzymes of Pelargonium zonale were studied using p-nitro blue tetrazoleum chloride. Plants were exposed to 17 ppb HF, and enzyme activities in treated plants were compared to those in controls. Leaves of control plants were incubated in 5 x 10–3 M sodium fluoride. Injuries observed in fumigation and solution experiments were similar. Leaf tissue subjected to HF or sodium fluoride evidenced less succinic p-nitro blue tetrazoleum reductase activity than did control tissue. Other TCA cycle dehydrogenase enzymes were not observably affected by the fluoride concentrations used in these experiments. Excised leaves cultured in 5 x 10–3 M sodium fluoride exhibited less succinic p-nitro blue tetrazoleum reductase activity after 24 hr than did leaves cultured in 5 x 10–3 M sodium chloride.


Author(s):  
Sarah Aherfi ◽  
Djamal Brahim Belhaouari ◽  
Lucile Pinault ◽  
Jean-Pierre Baudoin ◽  
Philippe Decloquement ◽  
...  

ABSTRACTSince the discovery of Acanthamoeba polyphaga Mimivirus, the first giant virus of amoeba, the historical hallmarks defining a virus have been challenged. Giant virion sizes can reach up to 2.3 µm, making them visible by optical microscopy. They have large genomes of up to 2.5 Mb that encode proteins involved in the translation apparatus. Herein, we investigated possible energy production in Pandoravirus massiliensis, the largest of our giant virus collection. MitoTracker and TMRM mitochondrial membrane markers allowed for the detection of a membrane potential in virions that could be abolished by the use of the depolarizing agent CCCP. An attempt to identify enzymes involved in energy metabolism revealed that 8 predicted proteins of P. massiliensis exhibited low sequence identities with defined proteins involved in the universal tricarboxylic acid cycle (acetyl Co-A synthase; citrate synthase; aconitase; isocitrate dehydrogenase; α-ketoglutarate decarboxylase; succinate dehydrogenase; fumarase). All 8 viral predicted ORFs were transcribed together during viral replication, mainly at the end of the replication cycle. Two of these proteins were detected in mature viral particles by proteomics. The product of the ORF132, a predicted protein of P. massiliensis, cloned and expressed in Escherichia coli, provided a functional isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle, which converts isocitrate to α-ketoglutarate. We observed that membrane potential was enhanced by low concentrations of Acetyl-CoA, a regulator of the tricarboxylic acid cycle. Our findings show for the first time that energy production can occur in viruses, namely, pandoraviruses, and the involved enzymes are related to tricarboxylic acid cycle enzymes. The presence of a proton gradient in P. massiliensis coupled with the observation of genes of the tricarboxylic acid cycle make this virus a form a life for which it is legitimate to question ‘what is a virus?’.


2009 ◽  
Vol 29 (4) ◽  
pp. 661-669 ◽  
Author(s):  
Jehoon Yang ◽  
Su Xu ◽  
Jun Shen

In vivo13C magnetic resonance spectroscopy has been applied to studying brain metabolic processes by measuring 13C label incorporation into cytosolic pools such as glutamate and aspartate. However, the rate of exchange between mitochondrial α-ketoglutarate/oxaloacetate and cytosolic glutamate/aspartate ( Vx) extracted from metabolic modeling has been controversial. Because brain fumarase is exclusively located in the mitochondria, and mitochondrial fumarate is connected to cytosolic aspartate through a chain of fast exchange reactions, it is possible to directly measure Vx from the four-carbon side of the tricarboxylic acid cycle by magnetization transfer. In isoflurane-anesthetized adult rat brain, a relayed 13C magnetization transfer effect on cytosolic aspartate C2 at 53.2ppm was detected after extensive signal averaging with fumarate C2 at 136.1ppm irradiated using selective radiofrequency pulses. Quantitative analysis using Bloch–McConnell equations and a four-site exchange model found that VxE13–19 µmol per g per min (≫ VTCA, the tricarboxylic acid cycle rate) when the longitudinal relaxation time of malate C2 was assumed to be within ±33% of that of aspartate C2. If VxE VTCA, the isotopic exchange between mitochondria and cytosol would be too slow on the time scale of 13C longitudinal relaxation to cause a detectable magnetization transfer effect.


1992 ◽  
Vol 262 (4) ◽  
pp. L495-L501 ◽  
Author(s):  
D. J. Bassett ◽  
S. S. Reichenbaugh

O2-induced impairment of mitochondrial energy generation was examined in intact lungs isolated from rats after 18-30 h exposure to either air or 100% O2 in vivo. Mitochondrial metabolic rates were determined by separate measurements of 14CO2 production from [1-14C]pyruvate and [U-14C]palmitate, perfused under normal and stimulated metabolic conditions brought about by perfusion with the uncoupler of oxidative phosphorylation, 2,4-dinitrophenol (DNP). In the absence of DNP, O2 exposure did not significantly alter 14CO2 productions from either substrate. DNP increased lung pyruvate and palmitate catabolism to CO2 twofold in air-exposed lungs but did not alter 14CO2 production in lungs isolated from O2-exposed rats. These data demonstrated an O2-induced impairment of maximal mitochondrial metabolism of both pyruvate and palmitate that could not be explained by alterations in tissue free coenzyme A or by loss of pyridine nucleotides. However, comparisons of the steady-state levels of tricarboxylic acid cycle intermediates between O2- and air-exposed lungs did identify isocitrate dehydrogenase as a possible site of O2-induced enzyme inactivation.


2020 ◽  
Vol 123 (10) ◽  
pp. 1117-1126
Author(s):  
Pauline Maciel August ◽  
Mateus Grings ◽  
Marcelo Sartori Grunwald ◽  
Geancarlo Zanatta ◽  
Vinícius Stone ◽  
...  

AbstractThe study of polyphenols’ effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring’s cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student’s t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring’s cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Sign in / Sign up

Export Citation Format

Share Document