scholarly journals Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities

1991 ◽  
Vol 266 (23) ◽  
pp. 15325-15333
Author(s):  
D.D. Ginty ◽  
D. Glowacka ◽  
C. DeFranco ◽  
J.A. Wagner
1986 ◽  
Vol 103 (3) ◽  
pp. 887-893 ◽  
Author(s):  
J Cremins ◽  
J A Wagner ◽  
S Halegoua

Nerve growth factor (NGF) mediates the phosphorylation of tyrosine hydroxylase in PC12 cells on two distinct peptide fragments, separable by two-dimensional tryptic phosphopeptide mapping (phosphopeptides T1 and T3). Phorbol diester derivatives capable of activating Ca+2/phospholipid-dependent protein kinase (C-kinase) cause a specific phosphorylation of peptide T3 in a dose-dependent, saturable manner. Derivatives of the endogenous C-kinase activator diacylglycerol, also cause the phosphorylation of tyrosine hydroxylase on peptide T3. The C-kinase inhibitors chlorpromazine and trifluoperazine inhibit the phorbol diester stimulated phosphorylation of site T3 in a dose-dependent manner. These agents inhibit the phosphorylation of T3 in response to NGF, but have no effect on NGF's ability to cause T1 phosphorylation. In a PC12 mutant deficient in cAMP-dependent protein kinase activity, NGF mediates the phosphorylation of tyrosine hydroxylase on peptide T3 but not on T1. We conclude that NGF mediates the activation of both the cAMP-dependent protein kinase and the C-kinase to phosphorylate substrate proteins. These kinases can act independently to phosphorylate tyrosine hydroxylase, each at a different site, and each of which results in the enzyme activation. A molecular framework is thus provided for events underlying NGF action.


1985 ◽  
Vol 5 (8) ◽  
pp. 1984-1992 ◽  
Author(s):  
R Van Buskirk ◽  
T Corcoran ◽  
J A Wagner

We have isolated and partially characterized three mutants of the pheochromocytoma line PC12 by using dibutyryl cyclic AMP (cAMP) as a selective agent. Each of these variants, A126-1B2, A208-4, and A208-7, was resistant to both dibutyryl cAMP and cholera toxin when cell growth was measured. In comparison to wild-type PC12 cells, each of these mutants was deficient in the ability to induce ornithine decarboxylase (ODC) in response to agents that act via a cAMP-dependent pathway. In contrast, each of these mutants induced ODC in response to nerve growth factor. To understand the nature of the mutations, the cAMP-dependent protein kinases of the wild type and of each of these mutants were studied by measuring both histone kinase activity and 8-N3-[32P]cAMP labeling. Wild-type PC12 cells contained both cAMP-dependent protein kinase type I (cAMP-PKI) and cAMP-dependent protein kinase type II (cAMP-PKII). Regulatory subunits were detected in both soluble and particulate fractions. The mutant A126-1B2 contained near wild-type PC12 levels of cAMP-PKI but greatly reduced levels of cAMP-PKII. Furthermore, when compared with wild-type PC12 cells, this cell line had an altered distribution in ion-exchange chromatography of regulatory subunits of cAMP-PKI and cAMP-PKII. The mutant A208-4 demonstrated wild-type-level binding of 8-N3-[32P]cAMP to both type I and type II regulatory subunits, but only half the wild-type level of type II catalytic activity. The mutant A208-7 had type I and type II catalytic activities equivalent to those in wild-type cells. However, the regulatory subunit of cAMP-PKI occurring in A208-7 demonstrated decreased levels of binding 8-N3-[32P]cAMP in comparison with the wild type. Furthermore, all mutants were defective in their abilities to bind 8-N3-[32P]cAMP to the type II regulatory protein in the particulate fraction. Thus, cAMP-PK was altered in each of these mutants. We conclude that both cAMP-PKI and cAMP-PKII are apparently required to induce ODC in response to increases in cAMP. Finally, since all three mutants induced ODC in response to nerve growth factor, the nerve growth factor-dependent induction of OCD was not mediated by an increase in cAMP that led to an activation of cAMP-PK. These mutants will be useful in the elucidation of the many functions controlled by cAMP and nerve growth factor.


Neuron ◽  
1990 ◽  
Vol 4 (3) ◽  
pp. 355-366 ◽  
Author(s):  
Daniel Kalman ◽  
Bradley Wong ◽  
Andrew E. Horvai ◽  
Martin J. Cline ◽  
Paul H. O'Lague

1985 ◽  
Vol 5 (8) ◽  
pp. 1984-1992
Author(s):  
R Van Buskirk ◽  
T Corcoran ◽  
J A Wagner

We have isolated and partially characterized three mutants of the pheochromocytoma line PC12 by using dibutyryl cyclic AMP (cAMP) as a selective agent. Each of these variants, A126-1B2, A208-4, and A208-7, was resistant to both dibutyryl cAMP and cholera toxin when cell growth was measured. In comparison to wild-type PC12 cells, each of these mutants was deficient in the ability to induce ornithine decarboxylase (ODC) in response to agents that act via a cAMP-dependent pathway. In contrast, each of these mutants induced ODC in response to nerve growth factor. To understand the nature of the mutations, the cAMP-dependent protein kinases of the wild type and of each of these mutants were studied by measuring both histone kinase activity and 8-N3-[32P]cAMP labeling. Wild-type PC12 cells contained both cAMP-dependent protein kinase type I (cAMP-PKI) and cAMP-dependent protein kinase type II (cAMP-PKII). Regulatory subunits were detected in both soluble and particulate fractions. The mutant A126-1B2 contained near wild-type PC12 levels of cAMP-PKI but greatly reduced levels of cAMP-PKII. Furthermore, when compared with wild-type PC12 cells, this cell line had an altered distribution in ion-exchange chromatography of regulatory subunits of cAMP-PKI and cAMP-PKII. The mutant A208-4 demonstrated wild-type-level binding of 8-N3-[32P]cAMP to both type I and type II regulatory subunits, but only half the wild-type level of type II catalytic activity. The mutant A208-7 had type I and type II catalytic activities equivalent to those in wild-type cells. However, the regulatory subunit of cAMP-PKI occurring in A208-7 demonstrated decreased levels of binding 8-N3-[32P]cAMP in comparison with the wild type. Furthermore, all mutants were defective in their abilities to bind 8-N3-[32P]cAMP to the type II regulatory protein in the particulate fraction. Thus, cAMP-PK was altered in each of these mutants. We conclude that both cAMP-PKI and cAMP-PKII are apparently required to induce ODC in response to increases in cAMP. Finally, since all three mutants induced ODC in response to nerve growth factor, the nerve growth factor-dependent induction of OCD was not mediated by an increase in cAMP that led to an activation of cAMP-PK. These mutants will be useful in the elucidation of the many functions controlled by cAMP and nerve growth factor.


Sign in / Sign up

Export Citation Format

Share Document