scholarly journals Mutation of peptide binding site in transmembrane region of a G protein-coupled receptor accounts for endothelin receptor subtype selectivity.

1994 ◽  
Vol 269 (17) ◽  
pp. 12383-12386
Author(s):  
S.R. Krystek ◽  
P.S. Patel ◽  
P.M. Rose ◽  
S.M. Fisher ◽  
B.K. Kienzle ◽  
...  
2004 ◽  
Vol 32 (5) ◽  
pp. 873-877 ◽  
Author(s):  
A. Christopoulos ◽  
L.T. May ◽  
V.A. Avlani ◽  
P.M. Sexton

Allosteric modulators of G-protein-coupled receptors interact with binding sites that are topographically distinct from the orthosteric site recognized by the receptor's endogenous agonist. Allosteric ligands offer a number of advantages over orthosteric drugs, including the potential for greater receptor subtype selectivity and a more ‘physiological’ regulation of receptor activity. However, the manifestations of allosterism at G-protein-coupled receptors are quite varied, and significant challenges remain for the optimization of screening methods to ensure the routine detection and validation of allosteric ligands.


Biochemistry ◽  
2011 ◽  
Vol 50 (17) ◽  
pp. 3411-3413 ◽  
Author(s):  
Amy Grunbeck ◽  
Thomas Huber ◽  
Pallavi Sachdev ◽  
Thomas P. Sakmar

2015 ◽  
Vol 48 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Kalli Kappel ◽  
Yinglong Miao ◽  
J. Andrew McCammon

AbstractElucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein–ligand binding, especially the drug recognition of GPCRs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247087
Author(s):  
Maike Stegen ◽  
Andrea Engler ◽  
Crista Ochsenfarth ◽  
Iris Manthey ◽  
Jürgen Peters ◽  
...  

Background G protein-coupled receptor kinase 6 (GRK6) is part of the G protein-coupled receptor kinase family, whose members act as key regulators of seven-transmembrane receptor signalling. GRK6 seems to play a role in regulation of inflammatory processes, but mechanisms of transcriptional regulation of GRK6 expression in inflammatory cell lines have not been characterized. Protein kinase C (PKC) signalling is also involved in inflammatory regulation and an impact of PKC activation on GRK6 protein expression was described previously. Thus, the aim of this study was to 1) characterize the GRK6 promoter, and 2) investigate a potential influence of PKC on GRK6 expression. Methods Five deletion constructs of the GRK6 promoter were cloned. After transient transfection into a human T cell line, promoter activity was assessed using luciferase reporter gene assays. Putative transcription factor binding sites were identified, mutated, and binding was investigated using electrophoretic mobility shift assays (EMSA). Following stimulation with a PKC activator, GRK6 expression on mRNA and protein levels was assessed by reverse transcriptase qPCR and Western blots. Results Investigation of the GRK6 promoter revealed a putative cAMP responsive element (CRE), whose mutation led to decreased promoter activity (p = 0.0006). Functionality of the CRE binding protein (CREB) binding site was verified in EMSA blots. Stimulation with a PKC activator resulted in decreased GRK6 promoter activity (p = 0.0027), mRNA (p = 0.04) and protein expression. Conclusion We characterized the human GRK6 promoter and identified promoter activity to be influenced by a CREB binding site. PKC might be one determinant contributing to altered GRK6 expression.


Sign in / Sign up

Export Citation Format

Share Document