transmembrane region
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 57)

H-INDEX

47
(FIVE YEARS 3)

Author(s):  
Muttineni Radhakrishna ◽  
Binitha R ◽  
Kalyani Putty ◽  
Kavitha Marpakala ◽  
Panyam Jaslin ◽  
...  

Against the backdrop of the second wave of COVID-19 pandemic in India that started in March 2021, we have monitored the spike (S) protein mutations in all the reported (GISAID portal) whole genome sequences of SARS CoV-2 circulating in India from 1 January 2021 to 31 August 2021. In the 43,102 SARS-CoV-2 genomic sequences analysed, we have identified 24, 260 mutations in the S protein, based on which 265 pango lineages could be categorised. The dominant lineage in most of the 28 states of India and its 8 union territories was B.1.617.2 (the delta variant). However, the states Madhya Pradesh, Jammu & Kashmir, and Punjab had B.1.1.7 (alpha variant) as the major lineage, while the Himachal Pradesh state reported B.1.36 as the dominating lineage. A detailed analysis of various domains of S protein was carried out for detecting mutations having a prevalence of >1%; 70, 18, 7, 3, 9, 4, and 1 (N=112) such mutations were observed in the N -terminal domain, receptor binding domain, C -terminal domain, fusion peptide region, heptapeptide repeat (HR)-1 domains, signal peptide domain, and transmembrane region, respectively. However, no mutations were recorded in the HR-2, and cytoplasmic domains of the S protein. Interestingly, 13.39% (N=15) of these mutations were reported to increase the infectivity and pathogenicity of the virus; 2%(N=3) were known to be vaccine breakthrough mutations; and 0.89%(N=1) were known to escape neutralising antibodies. Biological significance of 82% (N=92) of the reported mutations is yet unknown. As SARS-CoV-2 variants are emerging rapidly, it is critical to continuously monitor local viral mutations to understand national trends of virus circulation. This can tremendously help in designing better preventive regimens in the country, and avoid vaccine breakthrough infections.


2021 ◽  
Vol 11 (22) ◽  
pp. 10697
Author(s):  
Ai Fujimoto ◽  
Yidan Lyu ◽  
Masataka Kinjo ◽  
Akira Kitamura

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), is initiated by the interaction between a receptor protein, angiotensin-converting enzyme type 2 (ACE2) on the cell surface, and the viral spike (S) protein. This interaction is similar to the mechanism in SARS-CoV, a close relative of SARS-CoV-2, which was identified in 2003. Drugs and antibodies that inhibit the interaction between ACE2 and S proteins could be key therapeutic methods for preventing viral infection and replication in COVID-19. Here, we demonstrate the interaction between human ACE2 and a fragment of the S protein (S1 subunit) derived from SARS-CoV-2 and SARS-CoV using two-color fluorescence cross-correlation spectroscopy (FCCS), which can detect the interaction of fluorescently labeled proteins. The S1 subunit of SARS-CoV-2 interacted in solution with soluble ACE2, which lacks a transmembrane region, more strongly than that of SARS-CoV. Furthermore, one-to-one stoichiometry of the two proteins during the interaction was indicated. Thus, we propose that this FCCS-based interaction detection system can be used to analyze the interaction strengths of various mutants of the S1 subunit that have evolved during the worldwide pandemic, and also offers the opportunity to screen and evaluate the performance of drugs and antibodies that inhibit the interaction.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Jun Zheng ◽  
Xi Chen ◽  
Qiang Liu ◽  
Guisheng Zhong ◽  
Min Zhuang

Mitochondria and peroxisomes are independent but functionally closely related organelles. A few proteins have been characterized as dual-organelle locating proteins with distinct or similar roles on mitochondria and peroxisomes. MARCH5 is a mitochondria-associated ubiquitin ligase best known for its regulatory role in mitochondria quality control, fission, and fusion. Here, we used a proximity tagging system, PUP-IT, and identified new interacting proteins of MARCH5. Our data uncover that MARCH5 is a dual-organelle locating protein that interacts with several peroxisomal proteins. PEX19 binds the transmembrane region on MARCH5 and targets it to peroxisomes. On peroxisomes, MARCH5 binds and mediates the ubiquitination of PMP70. Furthermore, we find PMP70 ubiquitination and pexophagy induced by mTOR inhibition are blocked in the absence of MARCH5. Our study suggests novel roles of MARCH5 on peroxisomes.


2021 ◽  
Vol 22 (19) ◽  
pp. 10359
Author(s):  
Maria Teresa Lara Ortiz ◽  
Victor Martinell García ◽  
Gabriel Del Rio

Cells adapt to different stress conditions, such as the antibiotics presence. This adaptation sometimes is achieved by changing relevant protein positions, of which the mutability is limited by structural constrains. Understanding the basis of these constrains represent an important challenge for both basic science and potential biotechnological applications. To study these constraints, we performed a systematic saturation mutagenesis of the transmembrane region of HokC, a toxin used by Escherichia coli to control its own population, and observed that 92% of single-point mutations are tolerated and that all the non-tolerated mutations have compensatory mutations that reverse their effect. We provide experimental evidence that HokC accumulates multiple compensatory mutations that are found as correlated mutations in the HokC family multiple sequence alignment. In agreement with these observations, transmembrane proteins show higher probability to present correlated mutations and are less densely packed locally than globular proteins; previous mutagenesis results on transmembrane proteins further support our observations on the high tolerability to mutations of transmembrane regions of proteins. Thus, our experimental results reveal the HokC transmembrane region high tolerance to loss-of-function mutations that is associated with low sequence conservation and high rate of correlated mutations in the HokC family sequences alignment, which are features shared with other transmembrane proteins.


2021 ◽  
Author(s):  
Daniel Keri ◽  
Reto B. Cola ◽  
Kagiampaki Zacharoula ◽  
Tommaso Patriarchi ◽  
Patrick Barth

Genetically-encoded fluorescent sensors for neuromodulators are increasingly used molecular tools in neuroscience. However, these protein-based biosensors are often limited by the sensitivity of the protein scaffold towards endogenous ligands. Here, we explored the possibility of applying computational design approaches for enhancing sensor sensitivity. Using the dopamine sensor dLight1 as proof of concept, we designed two variants that boost the sensor's potency (EC50) for dopamine and norepinephrine by up to 5- and 15-fold, respectively. Interestingly, the largest effects were obtained through improved designed allosteric transmission in the transmembrane region of the sensor. Our approach should prove generally useful for enhancing sensing capabilities of a large variety of neuromodulator sensors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huan Zou ◽  
Mingfeng Guan ◽  
Yundong Li ◽  
Fang Luo ◽  
Wenyuan Wang ◽  
...  

Abstract Background Achondroplasia (ACH) is the most common genetic form of dwarfism and belongs to dominant monogenic disorder caused by a gain-of-function point mutation in the transmembrane region of FGFR3. There are no effective treatments for ACH. Stem cells and gene-editing technology provide us with effective methods and ideas for ACH research and treatment. Methods We generated non-integrated iPSCs from an ACH girl’s skin and an ACH boy’s urine by Sendai virus. The mutation of ACH iPSCs was precisely corrected by CRISPR-Cas9. Results Chondrogenic differentiation ability of ACH iPSCs was confined compared with that of healthy iPSCs. Chondrogenic differentiation ability of corrected ACH iPSCs could be restored. These corrected iPSCs displayed pluripotency, maintained normal karyotype, and demonstrated none of off-target indels. Conclusions This study may provide an important theoretical and experimental basis for the ACH research and treatment.


2021 ◽  
Vol 22 (17) ◽  
pp. 9219 ◽  
Author(s):  
Venera Z. Nezametdinova ◽  
Roman A. Yunes ◽  
Marina S. Dukhinova ◽  
Maria G. Alekseeva ◽  
Valery N. Danilenko

Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Ai Fujimoto ◽  
Yidan Lyu ◽  
Masataka Kinjo ◽  
Akira Kitamura

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), is initiated by the interaction between a receptor protein, angiotensin-converting enzyme type 2 (ACE2) on the cell surface, and the viral spike (S) protein. This interaction is similar to the mechanism in SARS-CoV, a close relative of SARS-CoV-2, which was identified in 2003. Drugs and antibodies that inhibit the interaction between ACE2 and S proteins could be key therapeutic methods for preventing viral infection and replication in COVID-19. Here, we demonstrate the interaction between human ACE2 and a fragment of the S protein (S1 subunit) derived from SARS-CoV-2 and SARS-CoV using two-color fluorescence cross-correlation spectroscopy (FCCS), which can detect the interaction of fluorescently labeled proteins. The S1 subunit of SARS-CoV-2 interacted in solution with soluble ACE2, which lacks a transmembrane region, more strongly than that of SARS-CoV. Furthermore, one-to-one stoichiometry of the two proteins during the interaction was indicated. Thus, we propose that this FCCS-based interaction detection system can be used to analyze the interaction strengths of various mutants of the S1 subunit that have evolved during the worldwide pandemic, and also offers the opportunity to screen and evaluate the performance of drugs and antibodies that inhibit the interaction.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 938
Author(s):  
Juan Cruz Almada ◽  
Ana Bortolotti ◽  
Jean Marie Ruysschaert ◽  
Diego de Mendoza ◽  
María Eugenia Inda ◽  
...  

DesK is a Histidine Kinase that allows Bacillus subtilis to maintain lipid homeostasis in response to changes in the environment. It is located in the membrane, and has five transmembrane helices and a cytoplasmic catalytic domain. The transmembrane region triggers the phosphorylation of the catalytic domain as soon as the membrane lipids rigidify. In this research, we study how transmembrane inter-helical interactions contribute to signal transmission; we designed a co-expression system that allows studying in vivo interactions between transmembrane helices. By Alanine-replacements, we identified a group of polar uncharged residues, whose side chains contain hydrogen-bond donors or acceptors, which are required for the interaction with other DesK transmembrane helices; a particular array of H-bond- residues plays a key role in signaling, transmitting information detected at the membrane level into the cell to finally trigger an adaptive response.


Sign in / Sign up

Export Citation Format

Share Document