scholarly journals SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones.

2002 ◽  
Vol 277 (16) ◽  
pp. 14350
Author(s):  
Hiroyuki Kato ◽  
Agneta Tjernberg ◽  
Wenzhu Zhang ◽  
Andrew N. Krutchinsky ◽  
Woojin An ◽  
...  
2001 ◽  
Vol 277 (7) ◽  
pp. 5498-5505 ◽  
Author(s):  
Hiroyuki Kato ◽  
Agneta Tjernberg ◽  
Wenzhu Zhang ◽  
Andrew N. Krutchinsky ◽  
Woojin An ◽  
...  

2021 ◽  
Author(s):  
Byung Hoon Jo

There is a high demand for the production of recombinant proteins in Escherichia coli for biotechnological applications but their production is still limited by their insolubility. Fusion tags have been successfully used to enhance the solubility of aggregation-prone proteins; however, smaller and more powerful tags are desired for increasing the yield and quality of target proteins. Herein, NEXT tag, a 53 amino acid-length solubility enhancer, is described. The NEXT tag showed outstanding ability to improve both in vivo and in vitro solubilities with minimal effect on passenger proteins. The C-terminal region of the tag was mostly responsible for in vitro solubility, while the N-terminal region was essential for in vivo soluble expression. The NEXT tag appeared to be intrinsically disordered and seemed to exclude neighboring molecules and prevent protein aggregation by acting as an entropic bristle. This novel peptide tag should have general use as a fusion partner to increase the yield and quality of difficult-to-express proteins.


2000 ◽  
Vol 33 (4) ◽  
pp. 528-536 ◽  
Author(s):  
Isabel Mayo ◽  
Paz Arizti ◽  
Albert Pares ◽  
Joaquin Oliva ◽  
Rita Alvarez Doforno ◽  
...  

2013 ◽  
Vol 20 (11) ◽  
pp. 1211-1216 ◽  
Author(s):  
L’ubomír Borko ◽  
Július Kostan ◽  
Alexandra Zahradníkova ◽  
Vladimír Pevala ◽  
Juraj Gasperík ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Adam Taylor ◽  
Xiang Liu ◽  
Ali Zaid ◽  
Lucas Y. H. Goh ◽  
Jody Hobson-Peters ◽  
...  

ABSTRACTMosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of theTogaviridaefamily responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infectionin vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design.IMPORTANCECHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain affecting millions of people. After a series of major outbreaks over the last 10 years, CHIKV and its mosquito vectors have been able to expand their range extensively, now making CHIKV a human pathogen of global importance. With no licensed vaccine or antiviral therapy for the treatment of CHIKV disease, there is a growing need to understand the molecular determinants of viral pathogenesis. These studies identify a previously uncharacterized nucleolar localization sequence (NoLS) in CHIKV capsid protein, begin a functional analysis of site-directed mutants of the capsid protein NoLS, and examine the effect of the NoLS mutation on CHIKV pathogenesisin vivoand its potential to influence CHIKV vaccine design. A better understanding of the pathobiology of CHIKV disease will aid the development of effective therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document