Identification, N-terminal region sequencing and similarity analysis of differentially expressed proteins in Paracoccidioides brasiliensis

1999 ◽  
Vol 37 (2) ◽  
pp. 115-121 ◽  
Author(s):  
A. F. Cunha ◽  
M. V. Sousa ◽  
S. P. Silva ◽  
R. S. A. JesuIno ◽  
C. M. A. Soares ◽  
...  
1999 ◽  
Vol 37 (2) ◽  
pp. 115-121 ◽  
Author(s):  
A.F. Cunha ◽  
M.V. Sousa ◽  
S.P. Silva ◽  
R.S.A. Jesuíno ◽  
C.M.A. Soares ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0218013 ◽  
Author(s):  
Cristiane Candida do Amaral ◽  
Geisa Ferreira Fernandes ◽  
Anderson Messias Rodrigues ◽  
Eva Burger ◽  
Zoilo Pires de Camargo

2020 ◽  
Vol 17 ◽  
Author(s):  
Qian Lu ◽  
Hai-Zhu Xing ◽  
Nian-Yun Yang

Background: CCl4 acute liver injury (ALI) is a classical model for experimental research. However, there are few reports involved in the fundamental research of CCl4-induced ALI Ligustri Lucidi Fructus (LLF) are and its prescription have been used to treat hepatitis illness clinically. LLF and its active ingredients displayed anti-hepatitis effects, but the mechanism of function has not been fully clarified Objective: To investigate the proteomic analysis of CCl4-induced ALI, and examine the effects of active total glycosides (TG) from LLF on ALI of mice4, including histopathological survey and proteomic changes of liver tissues, and delineate the possible underlying mechanism. Methods: CCl4 was used to produce ALI mice model. The model mice were intragastrically administrated with TG and the liver his-topathological changes of mice were examined. At the end of test, mice liver samples were collected, after protein denaturation, re-duction, desalination and enzymatic hydrolysis, identification was carried out by nano LC-ESI-OrbiTrap MS/MS technology. The data was processed by Maxquant software. The differentially-expressed proteins were screened and identified, and their biological information was also analyzed based on GO and KEGG analysis. Key protein expression was validated by Western blot analysis Results: A total of 705 differentially-expressed proteins were identified during the normal, model and administration group. 9 signifi-cant differential proteins were focused based on analysis. Liver protein expression changes of CCl4-induced ALI mice were mainly involved in several important signal channels, namely FoxO signaling pathway, autophagy-animal, insulin signaling pathway. TG has anti-liver damnification effect in ALI mice, the mechanism of which is related to FoxO1 and autophagy pathways Conclusion: CCl4 inhibited expression of insulin-Like growth factor 1 (Igf1) and 3-phosphoinositide-dependent protein kinase 1 (Pdpk1) in liver cells and induced insulin resistance, thus interfered with mitochondrial autophagy and regeneration of liver cells and the metabolism of glucose and lipid, and caused hepatic necrosis in mice. TG resisted liver injury in mice. TG adjusted the expression level of key proteins Igf1 and Pdpk1 after liver injury and improved insulin resistance, thus promoted autophagy and resisted the liver damage


Author(s):  
Yobana Armenta-Medina ◽  
Ivette Martínez-Vieyra ◽  
Oscar Medina-Contreras ◽  
Claudia G. Benitez-Cardoza ◽  
Albertana Jiménez-Pineda ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Rong Zhang ◽  
Weitao Jiang ◽  
Xin Liu ◽  
Yanan Duan ◽  
Li Xiang ◽  
...  

Abstract Background Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world, and is often caused by biotic factors (pathogen fungi) and abiotic factors (phenolic compounds). In order to clarify the proteomic differences of Fusarium moniliforme under the action of phloridzin, and to explore the potential mechanism of F. moniliforme as the pathogen of ARD, the role of Fusarium spp. in ARD was further clarified. Methods In this paper, the quantitative proteomics method iTRAQ analysis technology was used to analyze the proteomic differences of F. moniliforme before and after phloridzin treatment. The differentially expressed protein was validated by qRT-PCR analysis. Results A total of 4535 proteins were detected, and 293 proteins were found with more than 1.2 times (P< 0.05) differences. In-depth data analysis revealed that 59 proteins were found with more than 1.5 times (P< 0.05) differences, and most proteins were consistent with the result of qRT-PCR. Differentially expressed proteins were influenced a variety of cellular processes, particularly metabolic processes. Among these metabolic pathways, a total of 8 significantly enriched KEGG pathways were identified with at least 2 affiliated proteins with different abundance in conidia and mycelium. Functional pathway analysis indicated that up-regulated proteins were mainly distributed in amino sugar, nucleotide sugar metabolism, glycolysis/ gluconeogenesis and phagosome pathways. Conclusions This study is the first to perform quantitative proteomic investigation by iTRAQ labeling and LC-MS/MS to identify differentially expressed proteins in F. moniliforme under phloridzin conditions. The results confirmed that F. moniliforme presented a unique protein profile that indicated the adaptive mechanisms of this species to phloridzin environments. The results deepened our understanding of the proteome in F. moniliforme in response to phloridzin inducers and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents to control ARD.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 178-179
Author(s):  
S. Alehashemi ◽  
M. Garg ◽  
B. Sellers ◽  
A. De Jesus ◽  
A. Biancotto ◽  
...  

Background:Systemic Autoinflammatory diseases present with sterile inflammation. NOMID (Neonatal-Onset Multisystem Inflammatory Disease) is caused by gain-of-function mutations inNLRP3and excess IL-1 production, presents with fever, neutrophilic dermatosis, aseptic meningitis, hearing loss and eye inflammation; CANDLE (Chronic Atypical Neutrophilic Dermatosis, Lipodystrophy and Elevated Temperature) is caused by loss-of-function mutations in proteasome genes that lead to type-1 interferon signaling, characterized by fever, panniculitis, lipodystrophy, cytopenia, systemic and pulmonary hypertension and basal ganglia calcification. IL-1 blockers are approved for NOMID and JAK-inhibitors show efficacy in CANDLE treatment.Objectives:We used proteomic analysis to compare differentially expressed proteins in active NOMID and CANDLE compared to healthy controls before and after treatment, and whole blood bulk RNA seq to identify the immune cell signatures.Methods:Serum samples from active NOMID (n=12) and CANDLE (n=7) before and after treatment (table 1) and age matched healthy controls (HC) (n=7) were profiled using the SomaLogic platform (n=1125 proteins). Differentially expressed proteins in NOMID and CANDLE were ranked after non-parametric tests for unpaired (NOMIDp<0.05, CANDLE,p<0.1) and paired (p<0.05) analysis and assessed by enriched Gene Ontology pathways and network visualization. Whole blood RNA seq was performed (NOMID=7, CANDLE=7, Controls =5) and RPKM values were used to assess immune cells signatures.Table 1.Patient’s characteristicsNOMIDN=12, Male =6CANDLEN=7, Male =6AgeMedian (range)12 (2, 28)16 (3, 20)Ethnicity%White (Hispanic)80 (20)100 (30)GeneticsNLRP3mutation(2 Somatic, 10 Germline)mutations in proteasome component genes(1 digenic, 6 Homozygous/compound Heterozygous)Before treatmentAfter treatmentBefore treatmentAfter treatmentCRPMedian (range) mg/L52 (16-110)5 (0-23)5 (0-101)1 (0-4)IFN scoremedian (range)0NA328 (211-1135)3 (0-548)Results:Compared to control, 205 proteins (127 upregulated, 78 downregulated) were significantly different at baseline in NOMID, compared to 163 proteins (101 upregulated, and 62 downregulated) in CANDLE. 134 dysregulated proteins (85 upregulated, 49 downregulated) overlapped in NOMID and CANDLE (Figure 1). Pathway analysis identified neutrophil and monocyte chemotaxis signature in both NOMID and CANDLE. NOMID patients had neutrophilia and active neutrophils. CANDLE patients exhibited active neutrophils in whole blood RNA. Endothelial cell activation was the most prominent non-hematopoietic signature and suggest distinct endothelial cell dysregulation in NOMID and CANDLE. In NOMID, the signature included neutrophil transmigration (SELE) endothelial cell motility in response to angiogenesis (HGF, VEGF), while in CANDLE the endothelial signatures included extracellular matrix protein deposition (COL8A) suggesting increased vascular stiffness. CANDLE patients had higher expression of Renin, 4 out of 7 had hypertension, NOMID patients did not have hypertension. Treatment with anakinra and baricitinib normalized 143 and 142 of dysregulated proteins in NOMID and CANDLE respectively.Conclusion:Differentially expressed proteins in NOMID and CANDLE are consistent with innate immune cell activation. Distinct endothelial cell signatures in NOMID and CANDLE may provide mechanistic insight into differences in vascular phenotypes. Treatment with anakinra and Baricitinib in NOMID and CANDLE leaves 30% and 13% of the dysregulated proteins unchanged.Acknowledgments:This work was supported by Intramural Research atNational Institute of Allergy Immunology and Infectious Diseases of National Institutes of Health, Bethesda, Maryland, the Center of Human Immunology and was approved by the IRB.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document