scholarly journals Activator proteins for glycosphingolipid hydrolysis by endoglycoceramidases. Elucidation of biological functions of cell-surface glycosphingolipids in situ by endoglycoceramidases made possible using these activator proteins.

1991 ◽  
Vol 266 (12) ◽  
pp. 7919-7926
Author(s):  
M Ito ◽  
Y Ikegami ◽  
T Yamagata
Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


2021 ◽  
Author(s):  
Nageswari Yarravarapu ◽  
Rohit Sai Reddy Konada ◽  
Narek Darabedian ◽  
Nichole J. Pedowtiz ◽  
Soumya N. Krishnamurthy ◽  
...  

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ however use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAz-ylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


Author(s):  
Bin Zhang ◽  
Lianli Chi

Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.


Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1257-1264 ◽  
Author(s):  
R Andreesen ◽  
KJ Bross ◽  
J Osterholz ◽  
F Emmrich

We have analyzed the expression of late differentiation antigens during terminal in vitro maturation of human macrophages (M phi) from blood monocytes (MO) in comparison to their distribution among mature M phi residing in various tissue sites. By immunizing mice with M phi derived from blood MO by culture on hydrophobic Teflon foils, monoclonal antibodies (mAbs) were developed (MAX.1, MAX.2, MAX.3, MAX.11) that reacted with lineage-restricted differentiation antigens. These antigens were expressed exclusively on M phi or were markedly increased after in vitro differentiation. The only overlap to another hemopoietic cell lineage was observed with MAX.3, which is shared by platelets and megakaryocytes. In the course of M phi maturation in vitro, the MAX.1 and MAX.3 antigens are detected within the cytoplasm two days before they appear on the cell surface. In contrast, the MAX.11 antigen is expressed simultaneously in the cytoplasm and at the cell surface, is found in varying degrees on a minor portion of blood MO and U937 cells, and is expressed rapidly at high density during early M phi differentiation in vitro. Among conventional mAbs that do not react with MO we found those against the transferrin (TF)-receptor, the BA-2, and the PCA1 antigen to label M phi. M phi matured in vivo and isolated from body fluids were positive with some but not all MAX mAbs. Distinctive patterns were observed with pulmonary M phi, exudate M phi from pleural and peritoneal effusions, synovial fluids, and early lactation milk. M phi from the alveolar space, for example, constantly expressed the MAX.2 antigen but not the MAX.3 antigen. Pleural effusion M phi, however, did not react with the MAX.1 mAb, but in most cases, it did react with the MAX.3 mAb. The detection of novel differentiation antigens, all expressed on monocyte-derived M phi but differently expressed on site-specific M phi in situ, underlines the remarkable heterogeneity among human M phi. The expression of these antigens is flexible because those MAX antigens that were not expressed in situ could be induced if cells from distinct tissue sites were cultured in vitro for several days. MAX mAbs may be of potential value to study both the sequential stages of maturation within the M phi lineage as well as differential developments induced by various culture conditions in parallel to environmental factors in vivo.


1989 ◽  
Vol 256 (4) ◽  
pp. G689-G697
Author(s):  
A. Anteunis ◽  
A. Astesano ◽  
B. Portha ◽  
G. Hejblum ◽  
G. Rosselin

We perfused the pancreas with 125I-labeled vasoactive intestinal peptide (VIP) to follow the concomitant distribution of radioactivity in beta- and acinar cells as a function of time. This distribution was quantitated by computer-assisted analysis of high-resolution video autoradiographs. Density labeling was expressed as normalized specific activity (disintegration density per volume density). Immediately after a 4-min perfusion of 125I-VIP, labeling in beta-cells was mainly concentrated on the cell surface and peripheral tubules and vesicles. After three 30-s pulses of 125I-VIP, separated by intervals of 3.5 min of buffer perfusion, lysosome-like structures were heavily labeled. When VIP internalization was prolonged, labeling was similar to that observed with the 4-min perfusion, indicating a high VIP disposal rate in the lysosome-like structures. In acinar cells, labeling persisted on the surface and the early vacuolar system. We conclude the following: 1) an active endocytotic system, linked to the transport and sorting of a neuromediator, is present in beta-cells; and 2) the differences between the distribution of labeling in acinar and beta-cells suggest that the regulation of VIP internalization is tissue specific.


Sign in / Sign up

Export Citation Format

Share Document