Production of hydrogen from oxidative steam reforming of methanolI. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor

2004 ◽  
Vol 228 (1) ◽  
pp. 43-55 ◽  
Author(s):  
M TURCO ◽  
G BAGNASCO ◽  
U COSTANTINO ◽  
F MARMOTTINI ◽  
T MONTANARI ◽  
...  
2018 ◽  
Vol 156 ◽  
pp. 06013
Author(s):  
Widayat Widayat ◽  
Arianti Nuur Annisa ◽  
Hantoro Satriadi ◽  
Syaiful Syaiful

Nickel is commonly used as a catalyst in hydrogen production. However, the use of nickel catalysts in the steam reforming process has the disadvantage of coke formation and high cost. Therefore, in this research, Ni/ZSM-5 catalyst synthesis was used to reduce production cost and an addition of cobalt (Co) metal to avoid coke formation. The method consists of a synthesis of ZSM-5 catalyst using hydrothermal process. Furthermore, the crystalline product was impregnated with the metal cobalt, nickel and combination of cobalt-nickel as much as 2% by weight metal/weight of the catalyst. Then the XRD and EDX characterization of Co/ZSM-5, Ni/ZSM-5, and CoNi/ZSM-5 was done followed by catalytic testing in the production of hydrogen from glycerol using steam reforming process. From XRD characterization results showed that Co/ZSM-5 catalyst has a crystallinity of 78.69%, Ni/ZSM-5 catalyst has 70.04% crystallinity and CoNi/ZSM-5 catalyst has 76.99% crystallinity. Catalytic testing on hydrogen production showed that CoNi/ZSM-5 catalyst produced the highest hydrogen concentration of 1,756.33 ppm while Ni/ZSM-5 catalyst produces 1,240 ppm and Co/ZSM-5 catalyst produces 491 ppm.


2013 ◽  
Vol 452 ◽  
pp. 163-173 ◽  
Author(s):  
Gabriella Garbarino ◽  
Serena Campodonico ◽  
Alvaro Romero Perez ◽  
Maria M. Carnasciali ◽  
Paola Riani ◽  
...  

2009 ◽  
Vol 142 (1-2) ◽  
pp. 52-60 ◽  
Author(s):  
Luciene Santos Carvalho ◽  
André Rosa Martins ◽  
Patrício Reyes ◽  
Marcelo Oportus ◽  
Alberto Albonoz ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Worawat Wattanathana ◽  
Suttipong Wannapaiboon ◽  
Chatchai Veranitisagul ◽  
Navadol Laosiripojana ◽  
Nattamon Koonsaeng ◽  
...  

Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2) powders were synthesized by thermal decomposition of cerium(III) complexes prepared by using cerium(III) nitrate or cerium(III) chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II) nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III)-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2) species than the materials prepared from cerium(III)-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.


2008 ◽  
Vol 8 (1 & 2) ◽  
pp. 19
Author(s):  
Anton Purnomo ◽  
Susan Gellardo ◽  
Leonila Abella ◽  
Hirofumi Hinode ◽  
Chris Salim

Catalytic performance and characterization of Ni/CeO2/ZrO2 and commercial catalyst from Indonesia were investigated in steam reforming of methane. Ni/CeO2/ZrO2 catalyst was prepared using co-impregnation of cerium nitrate and nickel nitrate onto zirconia support material. BET, SEM, EDS, XRD, TPD, TG, and ICP analyses were employed for the characterization of the catalysts. Remarkable catalytic performance of Ni/CeO2/ZrO2 catalyst at 600oC operating temperature and atmospheric pressure of about 74.9% methane conversion was obtained compared to 55.9% using the commercial catalyst. In addition, the presence of cerium in Ni/CeO2/ZrO2 was effective in improving the stability and resistance to coke formation. Less carbon formation was confirmed from the thermo-gravimetric analysis. These results showed that the prepared catalyst is promising in the industrial application which can be used at lower operation temperature for energy saving.


Sign in / Sign up

Export Citation Format

Share Document