scholarly journals Synthesis and Characterization of Co/Ni/CoNi-ZSM-5 Catalyst for Hydrogen Production

2018 ◽  
Vol 156 ◽  
pp. 06013
Author(s):  
Widayat Widayat ◽  
Arianti Nuur Annisa ◽  
Hantoro Satriadi ◽  
Syaiful Syaiful

Nickel is commonly used as a catalyst in hydrogen production. However, the use of nickel catalysts in the steam reforming process has the disadvantage of coke formation and high cost. Therefore, in this research, Ni/ZSM-5 catalyst synthesis was used to reduce production cost and an addition of cobalt (Co) metal to avoid coke formation. The method consists of a synthesis of ZSM-5 catalyst using hydrothermal process. Furthermore, the crystalline product was impregnated with the metal cobalt, nickel and combination of cobalt-nickel as much as 2% by weight metal/weight of the catalyst. Then the XRD and EDX characterization of Co/ZSM-5, Ni/ZSM-5, and CoNi/ZSM-5 was done followed by catalytic testing in the production of hydrogen from glycerol using steam reforming process. From XRD characterization results showed that Co/ZSM-5 catalyst has a crystallinity of 78.69%, Ni/ZSM-5 catalyst has 70.04% crystallinity and CoNi/ZSM-5 catalyst has 76.99% crystallinity. Catalytic testing on hydrogen production showed that CoNi/ZSM-5 catalyst produced the highest hydrogen concentration of 1,756.33 ppm while Ni/ZSM-5 catalyst produces 1,240 ppm and Co/ZSM-5 catalyst produces 491 ppm.

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1815
Author(s):  
João Paulo da S. Q. Menezes ◽  
Gabriel M. Guimarães ◽  
Mônica A. P. da Silva ◽  
Mariana M. V. M. Souza

Hydrogen is mainly produced by steam reforming of natural gas, a nonrenewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work, butanol, a model compound of bio-oil, was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 °C, atmospheric pressure, GHSV of 500,000 h−1, and an aqueous solution feed of 10% v/v butanol. For this reaction, catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity, which is closely related to coke formation and deactivation. Ni/La2O3–Al2O3 presented a higher nickel dispersion (14.6%) which, combined with other properties, led to a higher stability, higher mean hydrogen yield (71%), and lower coke formation per mass (56%). On the other hand, the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−²).


2008 ◽  
Vol 8 (1 & 2) ◽  
pp. 19
Author(s):  
Anton Purnomo ◽  
Susan Gellardo ◽  
Leonila Abella ◽  
Hirofumi Hinode ◽  
Chris Salim

Catalytic performance and characterization of Ni/CeO2/ZrO2 and commercial catalyst from Indonesia were investigated in steam reforming of methane. Ni/CeO2/ZrO2 catalyst was prepared using co-impregnation of cerium nitrate and nickel nitrate onto zirconia support material. BET, SEM, EDS, XRD, TPD, TG, and ICP analyses were employed for the characterization of the catalysts. Remarkable catalytic performance of Ni/CeO2/ZrO2 catalyst at 600oC operating temperature and atmospheric pressure of about 74.9% methane conversion was obtained compared to 55.9% using the commercial catalyst. In addition, the presence of cerium in Ni/CeO2/ZrO2 was effective in improving the stability and resistance to coke formation. Less carbon formation was confirmed from the thermo-gravimetric analysis. These results showed that the prepared catalyst is promising in the industrial application which can be used at lower operation temperature for energy saving.


2017 ◽  
Vol 42 (14) ◽  
pp. 9087-9098 ◽  
Author(s):  
Nurul Huda Zamzuri ◽  
Ramli Mat ◽  
Nor Aishah Saidina Amin ◽  
Amin Talebian-Kiakalaieh

2005 ◽  
Vol 34 (5) ◽  
pp. 668-669 ◽  
Author(s):  
Kohei Urasaki ◽  
Kazuhisa Tokunaga ◽  
Yasushi Sekine ◽  
Eiichi Kikuchi ◽  
Masahiko Matsukata

2004 ◽  
Vol 228 (1) ◽  
pp. 43-55 ◽  
Author(s):  
M TURCO ◽  
G BAGNASCO ◽  
U COSTANTINO ◽  
F MARMOTTINI ◽  
T MONTANARI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document