commercial catalyst
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 25)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (18) ◽  
pp. 8462
Author(s):  
Sanaa Hafeez ◽  
Ilaria Barlocco ◽  
Sultan M. Al-Salem ◽  
Alberto Villa ◽  
Xiaowei Chen ◽  
...  

The use of hydrogen as a renewable fuel has attracted great attention in recent years. The decomposition of formic acid under mild conditions was investigated using a 2%Pd6Zn4 catalyst in a batch reactor. The results showed that the conversion of formic acid increases with reaction temperature and with the formic acid concentration. A process-simulation model was developed to predict the decomposition of formic acid using 2%Pd6Zn4 in a batch reactor. The model demonstrated very good validation with the experimental work. Further comparisons between the 2%Pd6Zn4 catalyst and a commercial Pd/C catalyst were carried out. It was found that the 2%Pd6Zn4 demonstrated significantly higher conversions when compared with the commercial catalyst.


2021 ◽  
Vol 899 ◽  
pp. 570-575
Author(s):  
Timur A. Borukaev ◽  
Raisa D. Archakova ◽  
Leila Ya. Uzhakhova ◽  
N.I. Mashukov

Aliphatic linear oligoesters with terminal hydroxyl groups and given molecular weight characteristics, hydroxyl and acid numbers were synthesized by esterification of adipic acid, ethylene glycol and butanediol-1,4. It was found that the main properties of complex oligoesters largely depend on the ratio of the starting reagents. The kinetic regularities of the process of esterification of adipic acid, ethylene glycol and butanediol-1,4 have been studied and determined. It was found that the duration of the vacuum stage of esterification in the presence of organomodified montmorillonite is noticeably shorter than when using a commercial catalyst.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 906
Author(s):  
Huirong Li ◽  
Xianfang Yi ◽  
Jifa Miao ◽  
Yanting Chen ◽  
Jinsheng Chen ◽  
...  

The accumulation of NH4HSO4 leads to the deactivation of commercial V2O5-WO3/TiO2 catalyst (VWTi) in practical application. The commercial catalyst is modified with 0.3 wt. % Ce and 0.05 wt. % Cu (donated as VWCeCuTi), and its sulfur resistance is noticeably improved. After loading 20 wt. % NH4HSO4, the NOx conversion of VWCeCuTi-S remains 40% at 250 °C, higher than that of VWTi-S (25%). Through a series of characterization analyses, it was found that the damaged surface areas and acid sites are the key factors for the deactivation of S-poisoned samples. However, surface-active oxygen and NO adsorption are increased by NH4HSO4 deposition, and the L–H mechanism is promoted over S-poisoned samples. Due to the interaction between V, Ce and Cu, the surface-active oxygen over VWCeCuTi-S is increased, and then NO adsorption is promoted. In addition, VWCeCuTi-S obtains a higher V5+ ratio and a better redox property than VWTi-S, which in turn accelerates the NH3-SCR reaction. More NO adsorption and encouraged reaction contribute to the better sulfur resistance of VWCeCuTi.


2021 ◽  
Author(s):  
Camila Andrea Delgadillo Camargo ◽  
Alex da Cunha Campos ◽  
Otavio Beruski ◽  
Thiago Lopes

When hydrogen is produced by electrolysis the possibility of water stress in some populations and scarcity of precious metals for catalyst production are seen as future barriers. The use of non-precious metal catalysts allied to direct saltwater splitting reduce the pressure on scarce resources. Here, four Metal-Nitrogen-Carbon (M-N-C) catalysts were synthesized with metal salts of Co, Fe, Ni and FeNi, with 1,5-diaminonhaptalene as N-C source. These catalysts were compared with a blank N-C without metal and a Pt/C commercial catalyst. Tests were conducted in electrolyte solution 0.5 M of H2SO4 and 0.5 M of NaCl. Results showed limited activity towards Hydrogen Evolution Reaction (HER) compared with Pt/C and other non precious metal catalysts. Nevertheless, points out trends for better catalyst synthesis as improved activity of FeNi catalyst in acidic media and saltwater.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdelhadi Louroubi ◽  
Abdallah Nayad ◽  
Ali Hasnaoui ◽  
Rachid Idouhli ◽  
Abdessalam Abouelfida ◽  
...  

Polysubstituted pyrroles have been synthesized in good yields via a four-component one-pot reaction of 1,3-dicarbonyl compounds, amines, aldehydes, and nitroalkanes using natural hydroxyapatite (HAp) as an efficient green catalyst. This strategy provides advantages such as simple experimental and work-up procedures, mild conditions, high selectivity, low cost, high atom economy, and environmental friendliness; it uses a green commercial catalyst and does not require a solvent. The electrochemical behavior of S300 steel in 1 M hydrochloric acidic was studied in the presence of these heterocyclic compounds. The results showed good inhibition efficiency for steel in acidic media.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 166
Author(s):  
Remi Nguyen ◽  
Nicolas Galy ◽  
Fatmah Alasmary ◽  
Christophe Len

The continuous oligomerization of glycerol for the formation of polyglycerol was carried out for the first time under microwave activation. In the presence of potassium carbonate, we studied the ease of handling, effects of temperature, flow rate and residence time of an inexpensive homogeneous commercial catalyst. The main linear and branched-chain diglycerol and triglycerol regioisomers were characterized and the quantification of the different isomers was realized. Successive cyclic mode processes followed by short distance distillation allowed the mixture to be enriched with glycerol ethers and thus to obtain a mixture of diglycerol (50.2 wt%), triglycerol (22.1 wt%), tetraglycerol (9.5 wt%), and pentaglycerol (4.3 wt%).


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5362
Author(s):  
Anton Maximov ◽  
Aslan Tsivadze ◽  
Alexander Fridman ◽  
Tatyana Kuchinskaya ◽  
Alexander Novikov ◽  
...  

In this paper, we developed an effective method for purifying oil sludge using a sorbing electrochemical matrix and assessed the prospects of this method in comparison with conventional hydrocracking. We synthesized Ni-W supported hydrocracking catalysts with different morphology and studied their activity under various conditions, we compared the obtained catalysts with commercial catalyst SGK-5. We demonstrated that the introduction of a secondary mesoporous structure in the catalyst leads to an increase in the yield of light fractions to 52 wt.%. The possibility is demonstrated to obtain hydrocarbons from reservoir oil sludge, dispersed into an aqueous solution of detergent, by the method of low-temperature hydrogenation in sorbing electrochemical matrices. The obtained product was characterized by low viscosity, low content of transition metals (<320 ppm), and sulphur (<260 ppm).


2020 ◽  
Vol 13 (2) ◽  
Author(s):  
Ade Syafrinaldy ◽  
Zulaicha Dwi Hastuti

This research is aiming to formulate the most appropriate catalyst which is expected to be able to directthe reaction to form Dimethyl Ether (DME) in direct synthesis process using dual catalyst. It iscommonly known that DME can be formulated from synthetic gasses reaction, H2 and CO. Theprocess might be gone through indirect synthesis, methanol synthesis and dehydration, or directsynthesis in which both rections take place in one reactor. Both processes, indirect or direct synthesis,each would be needed the right catalyst. Dual catalyst is prepared by mixing physically methanolsynthesis catalyst and methanol dehydration to form DME.As methanol dehydration catalyst, we makeuse of HZSM-5 with Si/Al ratio of 25 and 90. This HZSM-5 is firstly calcined for 6 hours at 500°C. Thetemperature is raised to 500°C from ambient with pace of 5°C/min. The methanol synthesis catalyst isbased on CuZnAl, made by copresipitation method from Cu(NO3)2.3H2O; Zn(NO3)2.4H2O andAl(NO3)2.9H2O. The catalyst was then calcined at 350 ° C for 6 hours, then reduced by hydrogen 10 ml /minute and nitrogen 90 ml / min at 240 ° C, atmospheric pressure for 10 hours to remove the Ocomponent in the catalyst. The catalyst that has been prepared is CuZnAl with a ratio of 4: 3: 1; 5: 3: 1and 6: 3: 1. The ratio of the two catalysts is 2: 1 for Cu / Zn / Al2O3: HZSM-5. The catalytic activity test iscarried out using a continuous tubular fixed-bed microactivity reactor. The reaction is carried out at apressure between 3 - 4 MPa and a temperature in the range of 200 - 300 ° C. T The flow rate of thereactant gas is controlled by a mass flow controller, with a mass of 1 g of catalyst. Through the catalyticactivity test, the best methanol synthesis was given by CuZnAl catalyst with a 5: 3: 1 molar ratio, whichresulted in a CO conversion of 19.66% greater than the commercial catalyst of CZA-Sudchemie of15.62%. As for dehydration of methanol, the best result was given by Sudchemie-ZSM-5 catalyst withSi /Al 25 ratio resulting in higher DME concentration (0.90%) than Si /Al 90 ratio (0.45%).Keywords : direct synthesis, methanol synthesis, methanol dehydration, dual catalyst, CO conversion


Sign in / Sign up

Export Citation Format

Share Document