InN thin films grown by metalorganic molecular beam epitaxy on sapphire substrates

2001 ◽  
Vol 222 (4) ◽  
pp. 701-705 ◽  
Author(s):  
J. Aderhold ◽  
V.Yu. Davydov ◽  
F. Fedler ◽  
H. Klausing ◽  
D. Mistele ◽  
...  
2000 ◽  
Vol 39 (Part 1, No. 11) ◽  
pp. 6170-6173 ◽  
Author(s):  
Min-Ho Kim ◽  
Sung-Nam Lee ◽  
Nae-Man Park ◽  
Seong-Ju Park

2000 ◽  
Vol 619 ◽  
Author(s):  
F. Niu ◽  
B.H. Hoerman ◽  
B.W. Wessels

ABSTRACTEpitaxial cubic MgO thin films were deposited on single crystal Si (001) substrates by metalorganic molecular beam epitaxy (MOMBE) using the solid precursor magnesium acetylacetonate as the source and an RF excited oxygen plasma as the oxidant. The growth process involved initial formation of an epitaxial β-SiC interlayer followed by direct deposition of a MgO overlayer. The film structure was characterized by X-ray diffraction as well as conventional and high-resolution transmission electron microscopy. Both the MgO overlayer and β-SiC interlayer had an epitaxial relationship such that MgO (001) (or SiC (001)) // Si (001) and MgO [110] (or SiC [110])// Si [110]. No evidence of an amorphous layer was observed at either the MgO/SiC or SiC/Si interface. Dielectric properties of the epitaxial MgO thin films on Si (001) were evaluated from capacitance-voltage (C-V) characteristic of metal-oxide-semiconductor (MOS) structures. The C-V measurements indicated an interface trap density at midgap as low as 1011 to 1012 cm−2 eV−1 and fixed oxide charge of the order of 1011/ cm2, respectively. These results indicate that epitaxial MgO deposited by MOMBE has potential as a gate insulator.


1993 ◽  
Vol 63 (9) ◽  
pp. 1270-1272 ◽  
Author(s):  
J. S. Foord ◽  
T. J. Whitaker ◽  
E. N. Downing ◽  
D. O’Hare ◽  
A. C. Jones

2017 ◽  
Author(s):  
Y. Kobayashi ◽  
T. Kimura ◽  
H. Nakazawa ◽  
H. Okamoto ◽  
M. Hiroki ◽  
...  

2014 ◽  
Vol 116 (4) ◽  
pp. 1979-1983 ◽  
Author(s):  
W. Chen ◽  
X. H. Pan ◽  
P. Ding ◽  
H. H. Zhang ◽  
S. S. Chen ◽  
...  

2001 ◽  
Vol 227-228 ◽  
pp. 917-922 ◽  
Author(s):  
Y.F Chen ◽  
H.J Ko ◽  
S.K Hong ◽  
K Inaba ◽  
Y Segawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document