scholarly journals A new family of very long chain alpha,omega-dicarboxylic acids is a major structural fatty acyl component of the membrane lipids of Thermoanaerobacter ethanolicus 39E.

1994 ◽  
Vol 35 (6) ◽  
pp. 1057-1065
Author(s):  
S Jung ◽  
J G Zeikus ◽  
R I Hollingsworth
2001 ◽  
Vol 281 (6) ◽  
pp. G1333-G1339 ◽  
Author(s):  
Janardan K. Reddy

Peroxisomes are involved in the β-oxidation chain shortening of long-chain and very-long-chain fatty acyl-CoAs, long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates, and in the process, they generate H2O2. There are two complete sets of β-oxidation enzymes present in peroxisomes, with each set consisting of three distinct enzymes. The classic PPARα-regulated and inducible set participates in the β-oxidation of straight-chain fatty acids, whereas the second noninducible set acts on branched-chain fatty acids. Long-chain and very-long-chain fatty acids are also metabolized by the cytochrome P-450 CYP4A ω-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal β-oxidation. Evidence derived from mouse models of PPARα and peroxisomal β-oxidation deficiency highlights the critical importance of the defects in PPARα-inducible β-oxidation in energy metabolism and in the development of steatohepatitis.


2021 ◽  
Author(s):  
Jing Wang ◽  
Weibo Wang ◽  
Qingpeng Wei ◽  
Jiayuan Zhang ◽  
Meiqi Zhang ◽  
...  

2021 ◽  
Vol 26 ◽  
pp. 100720
Author(s):  
Archana Natarajan ◽  
Rita Christopher ◽  
Shruti V. Palakuzhiyil ◽  
Sadanandavalli Retnaswami Chandra

2008 ◽  
Vol 40 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Silvia Bortolami ◽  
Evelin Comelato ◽  
Franco Zoccarato ◽  
Adolfo Alexandre ◽  
Lucia Cavallini

1984 ◽  
Vol 220 (2) ◽  
pp. 371-376 ◽  
Author(s):  
S Soboll ◽  
H J Seitz ◽  
H Sies ◽  
B Ziegler ◽  
R Scholz

The effect of long-chain acyl-CoA on subcellular adenine nucleotide systems was studied in the intact liver cell. Long-chain acyl-CoA content was varied by varying the nutritional state (fed and starved states) or by addition of oleate. Starvation led to an increase in the mitochondrial and a decrease in the cytosolic ATP/ADP ratio in liver both in vivo and in the isolated perfused organ as compared with the fed state. The changes were reversed on re-feeding glucose in liver in vivo or on infusion of substrates (glucose, glycerol) in the perfused liver, respectively. Similar changes in mitochondrial and cytosolic ATP/ADP ratios occurred on addition of oleate, but, importantly, not with a short-chain fatty acid such as octanoate. It is concluded that long-chain acyl-CoA exerts an inhibitory effect on mitochondrial adenine nucleotide translocation in the intact cell, as was previously postulated in the literature from data obtained with isolated mitochondria. The physiological relevance with respect to pyruvate metabolism, i.e. regulation of pyruvate carboxylase and pyruvate dehydrogenase by the mitochondrial ATP/ADP ratio, is discussed.


2016 ◽  
Vol 11 (10) ◽  
pp. 2685-2692 ◽  
Author(s):  
Pornpun Aramsangtienchai ◽  
Nicole A. Spiegelman ◽  
Bin He ◽  
Seth P. Miller ◽  
Lunzhi Dai ◽  
...  
Keyword(s):  

2016 ◽  
Vol 44 (4) ◽  
pp. 1019-1025 ◽  
Author(s):  
Tim Rasmussen

Mechanosensitive (MS) channels provide protection against hypo-osmotic shock in bacteria whereas eukaryotic MS channels fulfil a multitude of important functions beside osmoregulation. Interactions with the membrane lipids are responsible for the sensing of mechanical force for most known MS channels. It emerged recently that not only prokaryotic, but also eukaryotic, MS channels are able to directly sense the tension in the membrane bilayer without any additional cofactor. If the membrane is solely viewed as a continuous medium with specific anisotropic physical properties, the sensitivity towards tension changes can be explained as result of the hydrophobic coupling between membrane and transmembrane (TM) regions of the channel. The increased cross-sectional area of the MS channel in the active conformation and elastic deformations of the membrane close to the channel have been described as important factors. However, recent studies suggest that molecular interactions of lipids with the channels could play an important role in mechanosensation. Pockets in between TM helices were identified in the MS channel of small conductance (MscS) and YnaI that are filled with lipids. Less lipids are present in the open state of MscS than the closed according to MD simulations. Thus it was suggested that exclusion of lipid fatty acyl chains from these pockets, as a consequence of increased tension, would trigger gating. Similarly, in the eukaryotic MS channel TRAAK it was found that a lipid chain blocks the conducting path in the closed state. The role of these specific lipid interactions in mechanosensation are highlighted in this review.


1999 ◽  
Vol 40 (5) ◽  
pp. 881-892 ◽  
Author(s):  
Christina E. Gargiulo ◽  
Sarah M. Stuhlsatz-Krouper ◽  
Jean E. Schaffer

Author(s):  
Ch. Shiva Prasad ◽  
R. Vinoo ◽  
R.N. Chatterjee ◽  
M. Muralidhar ◽  
D. Narendranath ◽  
...  

Background: Acetyl-CoA Carboxylase Beta (ACACB) plays a key role in fatty acid oxidation and was known to be involved in production of very-long-chain fatty acid and other compounds needed for proper development. This gene is mainly expressed in the tissues of heart, muscle, liver and colon. It chiefly involved in the production of malonyl-coA, a potent inhibitor of carnitine palmitoyl transferase I (CPT-I) enzyme needed in transport of long-chain fatty acyl-coAs to the mitochondria for β-oxidation.Methods: The present study was conducted to explore the expression pattern of the ACACB gene in breast muscle tissue during pre-hatch embryonic day (ED) 5th to 18th and post-hatch (18th, 22nd and 40th week of age) periods of White leghorn (IWI line) by using Quantitative real-time PCR (qPCR). Then, fold change of ACACB gene expression was calculated.Result: Our study showed that the ACACB gene expression was down-regulated during embryonic stages from ED6 to ED18. The gene expression was also down-regulated during adult stages i.e. on 22nd and 40th week of age. This result indicated that the initial expression of the ACACB gene is required for embryo development and during adult periods, low gene expression leads to the less fat deposition in muscle of layer chicken. Finally, it can be concluded that there was a differential expression pattern of the ACACB gene during the pre-hatch embryonic and post-hatch adult periods to mitigate varied requirements of lipids during different physiological stages in layer chicken.


Sign in / Sign up

Export Citation Format

Share Document